BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: COVID-19 (Page 2 of 5)

Clearing Up COVID-19 Brain Fog

Many people who have recovered from COVID-19 still suffer long-term effects from the terrible virus. From fatigue to loss of smell, to depression and anxiety, there are a wide variety of long-term conditions caused by COVID-19. One condition especially frustrating for patients is known as “COVID-19 brain fog.

Noun confusion 2900892.svgAccording to Harvard Health, COVID-19 Brain Fog is the term used by patients to describe their feeling that their thinking is “sluggish, fuzzy, and not sharp.” Doctors can run tests on patients who feel like they are suffering from this condition; however, oftentimes the tests come back normal. Scientists have several theories regarding the cause of brain fog. For one, COVID-19 can have lingering effects not related to the brain. As I mentioned earlier, patients can suffer from various conditions, which can distract them, impairing their ability to think clearly.

Health Matters interviewed neurologists Dr. Mitchel Elkind and Dr. Alexander Merkler to learn more about COVID-19 Brain Fog. The doctors noted that patients can sustain brain damage from a stroke during their  COBrain Exercising.pngVID-19 infection, and this would be an obvious cause for cognitive differences; however, Dr. Elkind mentioned that “some people seem to have this brain fog out of proportion to their illness.” In theory, patients who had mild coronavirus symptoms should not have long-lasting cognitive effects, but the medical community is finding that they do. One possible explanation is immune system activation.

Like any virus, when the immune system releases molecules to help itself fight off SARS-CoV-2 without background.pngSARS-CoV-2, some of the molecules can affect the nervous system. Sometimes the body can overreact and start attacking normal cells, which is when we start seeing effects such as COVID-19 Brain Fog. The immune system recognizes the viral proteins, but sometimes it mistakes similar-looking proteins in the brain and ends up attacking those. Fortunately, scientists are researching possible treatments for this devastating condition. 

At Augusta University, researchers are developing a drug to treat COVID-19 Brain Fog. It has not been tested yet, but the drug is a polyphenol molecule. One polyphenol molecule, EGCG, inhibits SARS-CoV-2 from binding to host-cell receptor ACE2, thus preventing the virus from entering the host cell. Dr. Stephen Hsu, Professor of Oral Biology and Oral Health and Diagnostic Sciences at Augusta believes that in combination with EGCG technology, EC16, will “yield benefits for Long-COVID relief and protection.”

AP Bio Sidenote 🙂

This connects to AP Bio through the possible treatment of brain fog. EGCG acting as an inhibitor connects to receptor-mediated endocytosis because it blocks the ligand, in this case SARS-CoV-2, from binding to ACE2 and so the cell does not accept the SARS-CoV-2.

I chose this topic because I am interested in the long-term effects COVID-19 has on individuals as well as society.

Why is SARS-CoV-2 able to evade our immune system?

On December 1st, 2022,  Nature Immunology published an article based on discoveries, founded by University of Birmingham researchers, regarding why SARS-CoV-2 still continues to invade our bodies and harm our immune systems!

Structural model of SARS-CoV-2 infection - Oo 422117

In an experiment funded by the National Institute for Health and Care Researcher, CD4+ T cells (which are a necessity for our immune systems to protect from viruses) were tested at the beginning of the pandemic in healthcare workers that were infected with COVID- 19. This experiment determined that T-cells were successfully able to identify epitopes in the spike protein of SARS-CoV-2 but as SARS-CoV-2 continued to  evolve and mutate, the T-cell recognition was impaired. Against certain variants of SARS-CoV-2 such as Omicron, it was shown through this experiment that the T-cell recognition was less effective against the Omicron variant. Due to SAR-CoV-2 constant mutation affecting the role of our T- cells, this causes a lack of protection from our immune system which effects our health. This relates to biology class where we have been learning about how our immune systems can fight and prevent viruses, such as SARS-CoV-2. We have discussed the central roles of T- cells and how “helper T- cells” recognize antigens and stimulate humoral and cell mediated immunity by releasing cytokines. Learning about how vital T- cells are to our bodies while fighting off viruses makes me understand why after 3 years we are still being affected by SARS-CoV-2 virus!  This is also interesting to understand why certain variants of SARS-CoV-2 can be more detrimental to our health than other variants.

Healthy Human T Cell

This study also makes it clear that while the current vaccines are still essential to protect us from COVID-19, researchers are continuing to develop new vaccines that are specific to other variants.



 

When You Want to Wake Up and Smell the Roses but You Can’t Smell

Does it smell?! (8937541843)

It is March, 2020. Friends of friends of friends are beginning to contract COVID-19. What is one of the most common symptoms you hear about? The loss of smell. This  research article explains how COVID-19 has affected people’s sense of smell, why it’s important to restore this integral sense, and how researchers are working to do so. 

Icaro de A.T. Pires recalls when he realized that he had lost his sense of smell: his grape juice tasted flat. Two months after contracting COVID-19, he was unable to smell the beach on his vacation. Distraught by his inability to smell the salt of the sea, he realized how much he valued his sense of smell and its ability to bring up positive memories. Pires, an ear, nose, and throat doctor, recalled a deaf patient who had also lost her sense of smell, but instead of being unable to smell her vacation location, she was unable to smell at work, which was essential for her job at a perfumery. 

According to the British Medical Journal, about 5.6 percent of people, six months after having COVID-19, have not fully regained their ability to smell and taste. This is concerning if one considers that about 550 million people have had COVID-19. 

SARS-CoV-2 is not the first virus to eradicate people’s sense of smell, but the amount of people who have been affected by it has intensified the need for a solution to smell loss. 

The olfactory sensory neurons work similar to the taste bud cells in terms of cell signaling. There are olfactory receptors in the olfactory epithelium (on the roof of the nasal cavity) that detect smells. There are dendrites within these receptors that are covered in cilia. When these cilia are stimulated by odorants that have entered the nose (in a G-protein-coupled receptor process), this depolarizes the olfactory receptor cells and sends electrical signals to the olfactory bulb, which are tied to the olfactory epithelium by axons, making the olfactory bulb the postsynaptic cell. These then send the signal to the brain that a scent has been received.  

Location of olfactory ensheathing cells (OECs) within the olfactory system

The olfactory sensory neurons are vulnerable to mucus, bacteria, and viruses that might inhibit their ability to work. Recent studies show that SARS-CoV-2 indirectly affects the olfactory system by killing sustentacular cells that support olfactory neurons. This attack harms the olfactory epithelium, causing the neurons to receive less odor molecules. Over time, the inflammation that effects the olfactory sensory neurons decreases, but for some people recovering from COVID-19, it can take up to months for them to regain their sense of smell. 

Researchers are exploring smell training, a process by which a participant smells four different smells 30 seconds each, twice a day for about three months. Generally, smell training seems to work, with about 30-60% of people having improved senses of smell after completing the training. 

The process requires discipline and endurance: taking even one day off can undo your weeks or months of progress. However, this is counteracted by the fact that there are no negative side effects, with the exceptions of frustration for those it does not work for. Doctors want to warn their patients about the possibility that, despite one’s dedication to smell training, it still might be unsuccessful in restoring your sense of smell. 

Researchers are not completely sure how smell training helps, but they have ideas of some possibilities. It is possible that the training stimulates growth of replacement olfactory cells, or it possibly strengthens pathways in the brain. There is also data that shows that smell training boosts the amount of olfactory sensory neurons; however, is unclear exactly how smell training works.  

There are other possible solutions to help restore one’s sense of smell, such as steroids, supplements, or more advanced solutions such as epithelial transplants. 

The article explains how that people do not recognize the importance of their sense of smell until it is gone. In fact, in a survey done on 400 people, 19% percent said that they would rather give up their sense of smell than their cell phone. Would you rather give up your sense of smell or your cell phone? What about giving up your sense of smell or your little left toe? 15% percent of people said that they would rather give up their sense of smell over their little left toe. 

Researchers are continuously researching solutions to restoring people’s sense of smell. People who have lost their sense of smell for an extended period of time from COVID-19 are struggling with their ability to live their lives to the fullest-they want to wake up and smell the roses, but they cannot. 

Afraid of needles? No Problem- inhale a covid vaccine!

Its been a few years now since the first COVID-19 vaccine became available to the public. And since then, there has been a multitude of people who have been hesitant to receive a vaccine. Some people don’t believe in the vaccine – or even in the virus itself, some are just anti-vaxxers, some however, are simply afraid of needles. A Chinese pharmaceutical company based in Tianjin, China, CanSino Biologics, has recently created a COVID-19 vaccine you can inhale – and hopefully with this introduction, people will be more likely to get vaccinated as the “fear of the needle” with disappear.

The vaccine is called, “Convidecia Air.” And while you may be skeptical about it since it’s not really a “real vaccine that is injected into your body, the nasal flu vaccine has been around for years now and it enters your body the same way as Convidecia Air. I have personally received both the nasal vaccine (the one you inhale), and the needle vaccine (injection) from the flu, and I feel that they have worked the same in the past- which is why I’m optimistic about Convidecia Air.

CanSino Convidecia

As we’ve talked about in AP Biology recently, a regular (via injection) COVID-19 vaccine enters your body, and T-lymphocytes and B-lymphocytes remain in the body as a result. These lymphocytes function as both a Cell-Mediated Response and a Humoral Response, respectively, to try to fight off invading pathogens and prevent re-infection. With this new vaccine that enters the body via inhaling, the same T-cells and B-cells remain in the body after it is introduced to you.

 

CanSino Biologics logo

The introduction of this new type of COVID-19 vaccine seems promising to scientists, as by entering the body the same way as the actual SARS-CoV-2 Virus- through the lungs and mouth- scientists believe that an inhaled vaccine might be more effective in terms of preventing disease and stopping the spread since it is also enters the body via the lungs and mouth.

Overall, scientists are hopeful that with the introduction of this new type of “inhaled COVID-19 vaccine,” people will remain healthier, and the pace at which the world recovers during its post-pandemic state will increase.

 

A New Way to Predict COVID-19?

SARS-CoV-2 without background

According to this article from the Karolinska Institutet, its researchers believe IL-26(Interleukin-26) is a possible biomarker for acute COVID-19 because of its correlation with patients with acute COVID-19 infection in conjunction with its correlation with an exaggerated inflammatory response.

IL-26 is an inflammatory mediator and a driver of chronic inflammation because of its ability to act as a carrier of extracellular DNA, and as an antimicrobial molecule through its capacity to form pores in bacterial membranes.

In addition, this article from the Yale School of Medicine states that high levels of neutrophils, inflammatory cells, are a biomarker for COVID-19 patients who become severely ill. The article also connects COVID-19 with obesity, believing obesity increases the risk of severe illness from COVID-19. Another biomarker is thrombomodulin, a soluble form of a protein on the surface of endothelial cells, which was highly correlated with survival among all COVID-19 patients

Here is an image of a neutrophil:

Blausen 0676 Neutrophil (crop)

 

In an older article regarding biomarkers for the early stages of COVID-19, Professor Burkhard Becher and his team at the Institute of Experimental Immunology at the University of Zurich discovered that the number of natural killer T cells in the blood is a biomarker to predict the severity of the disease. As you learned, killer T cells, also known as Cytotoxic T Cells, are part of the Cell-Mediated Response to kill infected or cancerous cells. In this case, these T-cells help fight against the cells infected with SARS-CoV-2 to get rid of the virus from the body. The reason the vaccine is so important is that it creates memory cells that help prevent reinfection and improves the body’s reaction to the virus

Here is an image of a T-cell:

Healthy Human T Cell

Biomarkers are significant because they give us an understanding of what the virus does to the body and how the body reacts to it. This information can be used to help find early suspicion of disease, confirm disease severity, classify the disease, rationalize therapies, assess response to therapies, and predict the outcome. I believe that by being able to better analyze COVID-19 using these biomarkers, we will eventually be able to control the spread of the virus and end this pandemic we are facing.

Do you think the COVID-19 virus will have another surge or will it lessen and continue to infect us similar to influenza?

Threat of “Tripledemic” This Year

For the past three years, COVID-19 has been on everyone’s minds. Between the mask-wearing, quarantining, and social distancing performed over this time frame, it is understandable that the spread of other viruses was also curtailed by these measures. However, people are increasingly returning to pre-pandemic activities, and often unmasked – the potential for other viruses to spread rapidly and easily is back.

San Francisco COVID social distancing poster

This winter, influenza is a threat as always – the Centers For Disease Control and Prevention estimate that 2,100-6,200 Americans have already died this year – and fewer Americans have received flu shots this year compared to past pre-pandemic years. but the Respiratory Syncytial Virus (RSV) has the potential to be incredibly deadly this year too.

RSV primarily threatens children and infants, who lack protection with their weaker immune systems. Furthermore, there is currently no vaccine available for RSV. Experts suggest this season to be particularly dangerous because a generation of children have not had frequent exposure to various infections in their lifetime due to the social distancing required by the pandemic, combined with the gradual return of normal activity. When infected, the body’s innate immunity responds. If it fails to stop the virus from spreading, the adaptive immune response begins. Once the infection, in this case RSV, COVID-19, or Influenza are successfully fought off, T-memory cells and B-memory cells continue circulating to prevent serious reinfection. If reinfected, the secondary immune response that occurs will provide better long-term protection.

Children are typically exposed to RSV at least once before the age of two; that number has dropped drastically since the COVID-19 pandemic (not to say that these precautions were not vital and instrumental in controlling the spread of COVID-19). Therefore, they lack this immunity. Unfortunately, there is not much for medical professionals to currently do about this without a vaccine – simply wait for exposure to the virus to rise again. However, the effective vaccines developed for both COVID-19 and Influenza are capable of slowing the spread of both of these viruses – and have been doing so. Through consistent vaccination, we may be able to escape the “tripledemic” experts have been warning of this year.

One Generation’s Trash is Another Generation’s Treasure: How a selected mutation during the Black Death causes dangerous illness today

The Covid-19 pandemic has certainly changed millions of lives forever, but many scientists wonder how the pandemic could affect the human genome.  In a 2022 article in US news, researchers studied the Black Death, the 14th-century pandemic that wiped out nearly 25 million Europeans, and in particular, how it affected our bodies.

According to researchers, the Black Death led our bodies to select for certain genetic traits which at the time decreased their risk of infection.  These specific genes increased the activity of the immune system to better help fight the plague, however, today these mutations are having dangerous consequences.  Researchers have noticed a connection between such genes and the risk of numerous conditions, such as Crohn’s Disease, Lupus, and Rheumatoid Arthritis.  These illnesses are known as Autoimmune Diseases, a class of illnesses that occurs when the body tricks itself into attacking its own cells.

These specific genes increased the activity of the immune system to better help fight the plague, however, today these mutations are having dangerous consequences

According to LibreTexts, this phenomenon occurs when certain pathogens have a very similar molecular structure to the antigens that our bodies produce.  Therefore, our bodies are tricked into attacking their own cells thinking that they are pathogens.  This destroys important structures in our bodies, the absence of which causes illness, such as Crohn’s disease and Rheumatoid Arthritis.

According to Dutch biologist Henrik Poinar of McMaster University, “A hyperactive immune system may have been great in the past.” This hyperactivity may have led to an increase in activity against the plague, which in turn could have increased survival rates.  This groundbreaking research suggests that even the shortest event of monumental importance can forever change our bodies.  As stated by senior researcher Luis Bareirro, “Our genome today is a reflection of our whole evolutionary history.

The obvious question here is: will our current Covid-19 pandemic affect our bodies and are our bodies evolving? Researchers say no.  According to Barreiro, Covid’s low fatality rate makes it unlikely to cause any significant genetic change.   However, Covid’s mutations are difficult to predict, and we have no way of knowing how future mutations will affect our bodies.  Furthermore, in a recent study from Stanford Medical school, researchers identified 1,000 genes linked to severe Covid infection.  It is theoretically possible for these genes to be selected for as we evolve, and it is unclear how that could affect our ancestors.

Covid’s low fatality rate makes it unlikely to cause any significant genetic change

This selection is similar to the selection we are performing on fast-growing flowers in Biology class.  Like the removal of flowers without hairs, certain human genetic traits (probably not hairs) perform more favorably in a pandemic environment and may prevail due to natural selection.

While it is impossible to know what the future will hold, it is interesting to analyze how major historical events, like the Black Death, have affected our bodies.  While there isn’t consensus around how the current pandemic will affect our ancestors, scientists agree that these events are clearly linked to our evolution as a species.  According to Barreiro, “It’s not going to stop. It’s going to keep going for sure.”

Novel Nanobody Treatment Could be Used to Treat Animals Infected with SARS-CoV-2

As we have learned in AP Biology class, the spike protein, or S protein, is located on the surface of SARS-CoV-2 is linked to transmissibility and cell entry. Located on the S protein is the receptor-binding domain (RBD) which is a key factor that allows the virus to dock to body receptors and invade host cells. Effective antibody therapeutics target S proteins.

Fimmu-11-579250-g001

Due to their small size and ability to penetrate into lung tissue, nanobodies have been speculated to be an excellent source for novel COVID-19 antibody therapeutics. A recent study measured these proposed capabilities for potential usage as a treatment. The proposed therapeutics would be used in veterinary medicine and aim to directly prevent SARS-CoV-2 pseudoviruses from compromising host cells.

The researchers screened and sequenced specific nanobodies, then, they were produced and amplified. The study validated the speculation by observing the carefully selected nanobodies bind to the SARS-CoV-2 S protein and RBD protein simultaneously. 85% of pseudoviruses were observed to be inhibited in a solution with 100mg of nanobody concentration.

What makes nanobodies even more attractive for usage in veterinary medicine is that its inexpensive to produce and can be made in large amounts. Given these beneficial qualities of nanobodies, they seem to be a plausible and favorable COVID-19 treatment.

The Promise of Messenger RNA Therapy

A recent article about messenger RNA therapy outlines the evolution of messenger RNA therapy and how it has gone from an idea to a globally used treatment in just the past seventeen years. Recently, messenger RNA therapies such as the Pfizer-BioNTech and Moderna COVID-19 vaccines have been used by hundreds of millions of people around the world. 

The author Drew Weissman, a vaccine research professor at the University of Pennsylvania, and his colleague Katalin Karikó created mRNA molecules back in 2005 that would not cause harm when injected into animal tissue. Then in 2017, Weissman and Norbert Pardi found that this mRNA creation could be brought into human cells through a fatlike nanoparticle without harm, and that bringing this modified mRNA in protect mRNA from being broken down by the body and resulted in the immune system generating antibodies and more effectively neutralize the invading virus. Vaccines-09-00065-g001This mRNA fatlike nanoparticle is known as mRNA-LNP (pictured to the left). mRNA is able to enter cells without harm because it is carried in by this liquid nanoparticle which is known for its role in transportation. The Pfizer-BioNTech and Moderna COVID-19 vaccines use this mRNA-LNP, and in clinical trials have shown to successfully prevent over 90% of treated people from contracting COVID-19.

The positive results from many trials and studies of the Pfizer-BioNTech and Moderna COVID-19 vaccines have provided a lot of information on the success of mRNA-LNP. It has been found that mRNA-LNP is much more effective and quicker than other approaches to COVID-19 treatments such as growing vaccines in laboratory cell cultures. 

41541 2020 159 Fig1 HTMLMessenger RNA therapy works by making cells create proteins that induce a reaction from the immune system in response to invading viruses (pictured to the right). This reaction in response to invading viruses is called the humoral response, where cytotoxic T cells are made to release proteins that destroy infected cells. The humoral response also trains the immune system to respond to and attack that virus in the future by creating memory B cells to recognize it, which is called a secondary immune response.  This method of instructing cells to create these proteins yields a greater quantity at a time that conventional protein and monoclonal antibody therapies. 

The success of messenger RNA therapy in COVID-19 vaccines has inspired the further research and use of this method for other viruses, as well as cancers, food, allergies, and autoimmune diseases, and many clinical trials are underway. Messenger RNA therapy could be a much more time and cost efficient alternative for a lot of conditions and treatments. More research still needs to be done, and there are many improvements that could be made (such as smaller doses of or a better supply chain for the vaccine), but overall messenger RNA therapy is very promising for treatments of the future.

Could Sharks be the Solution to Ineffective SARS-CoV-2 Antibody Treatments?

Sharks are often associated with gruesome stories of attacks and horror. However, lead researcher at the University of Wisconsin-Madison School of Medicine and Public Health, Dr. Aaron LeBeau believes sharks deserve to be recognized in a more positive light– due to their potential for creating advanced neutralizing antibodies (NAb) therapeutics for treating SARS-CoV-2.

Ginglymostoma cirratum bluffs

Neutralizing antibodies have demonstrated efficacy in treating SARS-CoV-2 in previous trials. In the recent past, the FDA authorized two NAb therapeutics for emergency use for SARS-CoV-2. However, the effectiveness of these two treatments has been complicated by the development of new variants with highly mutated target antigens. These naturally occurring mutations in the target antigen result in insufficient neutralization of the virus when using those current therapeutics derived from classical human antibodies. 

This is news for concern as genome sequencing exposed the virus to create two single-letter mutations each month

As we learned in our AP Biology class, mutations to proteins such as SARS-CoV-2 antigens occur within the amino acid chains in the protein’s primary structure. These changes in chemicals could alter the kinds of covalent or ionic bonds in the protein’s tertiary structure. This, of course, changes the antigen’s three-dimensional shape. This is why the original NAbs have experienced diminished performance as new variants emerged. The antibodies from the treatments simply could no longer recognize the virus’ new antigen structure.

Therefore, there is a dire need for the development of new, more specialized NAbs, that can recognize the newly mutated epitopes that are currently incompatible with current neutralizing antibody therapeutics.

Dr. Aaron LeBeau believes that key findings for creating more efficient NAb treatments could be derived from the likes of nurse sharks! Within the immune systems of sharks, antibody-like proteins called Variable New Antigen Receptors (VNARs) were found to be highly effective at neutralizing coronaviruses, according to his recent publication in the Nature Communications journal.

Due to the small and highly specialized structure, VNARs are able to access and bind to epitopes that human antibodies normally couldn’t. This superior ability allows VNARs to reach deep into pockets and grooves within the target antigen, allowing for a better fit and neutralization. Dr. LeBeau’s research team concluded that their data suggests that VNARs would be effective therapeutic agents against emerging SARS-CoV-2 mutants, such as the Delta and Omnicron variants. 

With the help from researchers from the University of Minnesota and the Scottish biotech company, Elasmogen, the team hopes to develop the shark antibodies for therapeutic use within 10 years.

Do you think this is promising news? How do you feel about using shark “antibodies” in place of our own for serious cases of SARS-CoV-2? Assuming it’s safe, effective, and accessible to you, would you accept this treatment if you contracted a serious case of SARS-CoV-2? Please leave your thoughts in the comments.

Is The Virus That Has Turned Our World Upside Down Able To Be Solved With a Pill?

The scientific method of developing a hypothesis, testing the hypothesis, collecting the data and presenting the data to other scientists has led the world to many of its greatest scientific accomplishments. As we face greater and greater scientific problems each year, it is necessary to continue this method to find the best treatments for the world’s diseases. Covid-19 and its variants will continue to be at the top of the world’s problems since we see that vaccines don’t stop the spread of the disease and we just don’t know what new variants will do. To solve this, scientists are working hard to create new drug solutions to treat this deadly virus once a patient has been infected. The most recent being the Merck and Pfizer’s pills: Molnupiravir and Paxlovid. Both of these drugs are to be ingested soon after noticing symptoms. Both have shown promising results, but if we want this pandemic to be over with so we can get back to normal, we need assurances that these pills work now and for the coming variants.

Pfizer tested their antiviral combination Paxlovid pill and found that their pill works with an astonishing 89% decrease in hospitalization given in a 3 day symptom onset. When given within 5 days it was slightly less, yet still an improvement from our current numbers. Their research found three of the 389 people with Covid-19 (.08%) were hospitalized, compared to a 27 out of 385 (7%) in the placebo group. The pill is a protease inhibitor, just like the ones used to help stop the spread of HIV. It stops the action of protease, which halts the ability of the virus to replicate. Paxlovid uses a decades-old HIV drug, called ritonavir, that accelerates the protease inhibitor. With this data, the FDA approved Paxlovid just before Christmas.

Pfizer (2021)

Merck partnered with Ridgeback Therapeutics to produce their molnupiravir pill. It is a nucleoside analog, meaning it is an artificial building block of RNA, this introduces errors into the DNA of the Covid virus so it can’t replicate. The early trial stages gave a 48% reduction of the chances of hospitalization or death. The trial stopped once these results were revealed in hopes that it would be distributed to the public early. It was approved by the FDA one day after the Pfizer drug, but can’t be used in kids because of side effects. The effective success rate of the drug later dropped to 30%, so much lower than the Pfizer drug. After staying at a 30% success rate, there were more problems that arose. Due to it being a nucleoside analog, it was shown to be able to potentially harm human RNA in pregnant women. There were animal tests completed that showed both growth problems which would make it impossible to give the pill to pregnant women, children, or adolescents. Lindsay Baden, an infectious disease doctor who was apart of the FDA’s advisory committee said the drug might be helpful for “the right patient population, the right virus at the right time.” Ridgeback and Merck recently decided to let developing, poor countries make molnupiravir so that the drug can help countries that can’t usually afford expensive medicine we buy in the USA.

Merck & Co

Although a lot of the world is desperate for a swift end to the virus that has changed our lives over the past 2 years, these studies have shown how difficult this virus is to prevent and treat. Paxlovid looks like the most usable and safe drug to take when it is compared to molnupiravir.

Omicron’s Effect on the Vaccinated by Vaccination Status

As the world continues to be stricken by the seemingly everlasting wave of strains of Sars-Cov-2, the vaccine began to give people hope as it was extremely effective against the original disease as well as all the other strains up until now. With sudden jump in corona cases, researchers have discovered that there is a new virus that is soon to take over as the most prevalent virus in the world. It’s been named Omicron but the question that is on a lot of people’s mind is if this new strain will be hindered by the vaccine or will it continue on its rampage across the world.

Study Participant Receives NIAID-GSK Candidate Ebola Vaccine (3)

Studies show that the answer is dependent on vaccination status. Omicron has accounted for “90% of COVID cases in areas like the Midwest” states Doctor Rochelle Walensky. The article later goes on to state that the booster vaccination shot ” increased by 25-fold people’s levels of virus-fighting antibodies.” Ultimately the amount of vulnerability you have to this new strain is directly tied to how many vaccination shot you have. But why do we even need a booster shot if the first two doses should have been enough? Well to answer this question we first need to look at how the initial two doses work. The CDC states that “Vaccines work by stimulating your immune system to produce antibodies, exactly like it would if you were exposed to the disease.”  As we learned in our AP Biology class, by giving you a small amount of sars-cov-2, the dendritic cell is able to enlist the help of plasma B cells and memory B cells by sending out T helper cells. This is known as theHumorale Immunantwort humoral response and is what gives you the ability to fight off breakthrough infections as well as help hinder the symptoms of sars-cov-2. It is able to suppress symptoms as well as prevent reinfections because once your body has fought off a little bit of the virus with the antibodies created by B helper cells your body is able to make a copy of how to deal with it in your B memory cells. The memory B cells are what give you your immunity to the virus. However over time they do run out as you were only given a small amount of the virus so this is where the booster comes into affect. The booster shot is designed so that your body is able to continue to get stimulated by the virus so that you B plasma and helper cells are able to keep memorizing and keep fighting off small (in the case of the vaccine) or big (in the case of an actual infection) Covid cases. There may continue to be more booster that you must take in order to keep your immunity, and no its not because the chip is running out of battery or they want to keep injecting you, but its due to the fact that your body simply can’t remember such a small amount of the virus for very long and if you don’t get the booster you are 25x more likely to contract Omicron than those who have all three. Ultimately the vaccine is still effective against Omicron, however Omicrons ability to be more infectious than any other variant before it is why it was able to take over the world so quickly. That being said there is a very real possibility that there will be a Omicron centered booster shot that will be significantly more effective than the past three shots against this devastating variant. Feel free to let me know how you feel about Omicron, a special new booster, or about how that Vaccine works down below.

 

Will Shark Antibodies Help Create an End to the COVID-19 Pandemic?

A recent study shows that shark antibodies, known as VNARs, haven proven to be effective in halting the infection of WIV1-CoV in human cells. WIV1-CoV is a type of coronavirus, currently only circulating in bats, where SARS-CoV-2 likely originated from. The study has shown that while this method of COVID-19 prevention is not ready to be put to use yet, it can be used in future SARS outbreaks. 

The anti-SARS-CoV-2 VNARs, unlike human antibodies, are very small and are able to fit in tiny nooks where human antibodies can not fit. The VNARs have the ability to bind to the infectious coronavirus proteins and block their ability to connect with and infect human cells. These shark antibodies were tested against SARS-CoV-2 and a different version of this virus that is unable to replicate in cells, known as a pseudotype. After testing a pool of billions of possible VNARs, three effective candidates were identified. 

Tiburón azul (Prionace glauca), canal Fayal-Pico, islas Azores, Portugal, 2020-07-27, DD 28

The most effective VNAR is called 3B4. The 3B4 VNAR attaches itself to a small groove on the spike protein of the SARS-CoV-2 virus; this process effectively blocked the SARS-CoV-2 spike protein from binding to the human cell. This process is very similar to the actions of a competitive inhibitor. As we learned in AP Biology,  a competitive inhibitor is when a compound, similar to the substrate, competes for the same active site.

These shark VNARs are so important to the research against future and current coronavirus outbreaks because it is effective against all variants of this virus. As stated earlier, these antibodies stop the infection of  WIV1-CoV in human cells; because it halts the infection of the virus where COVID-19 likely originated from, it will be effective to all COVID-19 variants. Additionally, with more research these different antibodies can be used together if proven to be more effective. The shark antibodies are cheaper and easier to manufacture compared to human antibodies. While this method of protection against COVID-19 has yet to be tested on humans, with more research this could be the new way that humans protect themselves against all SARS-CoV viruses to come. What do you think?

 

 

Optimus Prime, Megatron, Proteins? The New Transformer Vaccine Candidate!

Amid the global outbreak of COVID-19, with no end in sight after nearly two years, the future wellbeing of humans is in danger. Coughs, fevers, and shortness of breath have lent way to millions of deaths across the globe. As thousands of researchers relentlessly work to find solutions to this virus, multiple vaccine candidates have emerged. Specifically, in the United States, millions of Americans have received doses of the Pfizer-BioNTech, Moderna, and Johnson & Johnson’s Janssen vaccines. However, scientists at Scripps Research recently recognized a new, self-assembling COVID-19 vaccine as a potentially more efficient and effective way to fight this worldwide battle.

 

Primarily, it is critical to understand how vaccines function as they help protect the immune system. The COVID-19 vaccines currently in effect are mRNA-based; in other words, the messenger RNA signals one’s body to produce a harmless viral protein that resembles the structure of a spike protein. The body, with the help of T-Helper cells, recognizes this structure as a foreign invader as B cells bind to and identify the antigen. The T-Helper cells will then signal these B cells to form B-Plasma cells and B-Memory cells. When getting the vaccine, the B-Memory cells are especially important as they prevent reinfection. This is a process known as adaptive immunity. Here, in the event of future infection with the spike-protein COVID-19, the memory cells would help carry out the same response more quickly and efficiently. Essentially, this process acts as the body’s training in case of any future infections.

 

While the Scripps Research COVID-19 vaccine would evoke a similar immune response to that described above, it differs from other candidates in how it assembles in the human body; this new vaccine would be comprised of proteins that are able to self-assemble. On their own, these nanoparticle proteins would transform into a sphere protein structure surrounded by smaller proteins, mimicking the coronavirus’s shape. Here, the self-assembled spike proteins are more sturdy and stable than in an mRNA-produced structure. Thus, it more accurately prepares the body for future infection with COVID-19. In fact, multiple tests found that mice who were given the experimental vaccine were able to fight off not only SARS-CoV-2 but also SARS-CoV1 along with the alpha, beta and gamma variants.

 

Nonetheless, influencing the public to get a newer vaccine instead of the well-trusted vaccines already in production requires proof of the candidate’s benefits. Primarily, as mentioned, early results find that this new candidate would perform well with many different strains of COVID-19. Additionally, researchers assert that this vaccine would be relatively simple to produce on a mass scale. Lastly, scientists found that this vaccine may well be more protective and long-lasting than current vaccine candidates. Although the process of vaccine approval is lengthy and often difficult, I am hopeful for the future of the Scripps Research vaccine if it is put into production. Moreover, I believe that such experimentation with self-assembling nanoparticle proteins transcends the current pandemic. The benefits of this field present a wide array of opportunities, and I look forward to seeing what its future may hold.

 

What do you think? Are these transformer-like self-assembling particles a gateway to the future of medicine or an unnecessary distraction from effective treatments already in circulation?

PAXLOVID: A Breath of Fresh Air?

Right now, it seems like the only defense against the evasiveness of COVID is the vaccine. However, there has been a new emergence that might help alleviate some worries. This is the PAXLOVID anti-viral drug. This new drug is given to people with high-risk cases of COVID a few days after they are infected. Though, before this pill is approved, it has to run through many trials, and it has to be confirmed by the FDA (Food and Drug Administration). The numbers that are coming out of the trials of the drug are nothing short of astonishing….

Pfizer made the announcement that within 3 days of infection, the PAXLOVID drug reduces the risk of hospitalization or death by 89%. The trials for the drug were over a substantial amount of time. The numbers that have been received as of now are that out of 607 people tested, only 6 were hospitalized and NONE died. These are very promising numbers for the drug, and it is a big step towards approval. To further boost PAXLOVID’s credibility, placebo, a “control” drug was tested alongside PAXLOVID. This control drug is a fake pill to make people believe it is doing good for them. This is called the placebo effect. In the end, the fantastic numbers produced by PAXLOVID against placebo proved that PAXLOVID is the way to go and that it is a successful drug that actually works. Now you may be wondering how does this “anti-viral drug” work to defend against COVID?

The answer is not so simple. The primary goal for PAXLOVID, and any other anti-viral drug is to prevent the virus from replicating. As we learned in our biology class, the way a virus replicates itself is by entering the dendritic cell or macrophage, then it can actually copy RNA virus and take command of the cell, basically hijacking it. However, the anti-viral drug is made up of two clear components that instead of interfering with RNA copying enzyme, it blocks something else. The drug has the ability to inhibit Protease enzymes. Protease enzymes are mainly responsible for activating long strains of protein by cutting them down.

Altogether, PAXLOVID is a versatile, and very useful drug that we will likely be seeing and hearing more about in the near future. If you contracted COVID, would you be willing to take PAXLOVID?

Prozac pills

The Key to SARS-CoV-2 Survival

Can your chance of surviving SARS-Cov-2 be predicted? It sure can be due to recently combined research efforts by ISB, Fred Hutchinson Cancer Research Center, Stanford University, Swedish Medical Center St. John’s Cancer Institute at Saint John’s Health Center, the University of Washington, the Howard Hughes Medical Institute. It comes from studying your immune system and a special part of your endocrine system, your metabolism

The researchers sampled the blood of nearly 200 COVID-19 patients. They took two draws per patient during the first week after being diagnosed with SARS-CoV-2 infection, totaling 374 blood samples. The researchers then analyzed their plasma and single immune cells. The analysis included 1,387 genes involved in metabolic pathways and 1,050 plasma metabolites. 

“We analyzed thousands of biological markers linked to metabolic pathways that underlie the immune system and found some clues as to what immune-metabolic changes may be pivotal in severe disease,” says researcher and graduate student from Fred Hutchinson Cancer Research Center, Jihoon Lee. Well, what were these clues? The clue is the link between how certain metabolic changes regulate how immune cells react when it comes to disease severity and predicting patient survival. Basically, increased COVID-19 severity leads to increased immune-related activity. 

Image drawn by author

With these new discoveries, researchers used single-cell sequencing to further investigate. They found that each major immune cell type has a distinct metabolic signature. “We have found metabolic reprogramming that is highly specific to individual immune cell classes (e.g. “killer” CD8+ T cells, “helper” CD4+ T cells, antibody-secreting B cells, etc.) and even cell subtypes, and the complex metabolic reprogramming of the immune system is associated with the plasma global metabolome and are predictive of disease severity and even patient death,”  says Dr. Yapeng Su, a research scientist at Institute for Systems Biology.

Despite the need for more advanced single-cell multi-omic analysis, this research has proven to be very successful. It provides significant insights for developing more effective treatments against COVID-19. What do you think about this research being used for predicting survivability for other diseases to come? 

Not 1, But 2: The Antiviral Pills That Could Change The Game For Covid-19

Right on time. As cases begin to rise again due to the omicron variant of SARS-CoV-2, the race for treatments against the virus becomes more urgent. Well, celebration is in order, for both Merck and Ridgeback Biotherapeutics and Pfizer have developed antiviral drugs in the form of a pill to fight the virus. 

Molnupiravir, the drug created by Merck and Ridgeback Biotherapeutics, and Paxlovid, Pfizer’s antiviral pill, are both pills that can be taken at home when one identifies early signs of Covid in themselves. For Merck, the latest data reads that their pill cut the rate of hospitalization or death by 30%. On the other hand, Paxlovid’s trial displayed reduced death and hospitalization rates of 89%, as long as the pill was consumed within 3 days of symptoms. 

Both effective medications and exciting progress, these two contrasting antiviral pills work in two distinct ways to stop viral replication. As we learned in AP Bio, viral replication is what occurs when a virus escapes the innate immunity responses, or the 1st line of defense, and enters the nasal epithelium, replicating in nasal passages and tissue fluids. This is what makes immunity responses to viruses often a long process, and is why we have to take sick days to allow time for our B and T cells to destroy the many invading pathogens and infected cells, respectively. A nucleoside analogue, Molnupiravir disguises as one of the aspects of RNA that makes up SARS-CoV-2. Normally, once inside the cells the virus would use a polymerase enzyme to assemble all the pieces of RNA into new copies of viral RNA, ultimately replicating itself. However, with the Molnupiravir drug’s deception, the virus creates new versions of itself with defective genetic materials, making it noninfectious. In juxtaposition, Paxlovid has a similar process of HIV treatments in that it is a protease inhibitor. After replicating its RNA, SARS-CoV-2 makes a large polyprotein containing all of the virus’s parts. But to function properly, this polyprotein must be broken into many small pieces by the enzyme protease. What Paxlovid does is it blocks that enzyme from its function, preventing the necessary production of small virus particles. Again like protease inhibitors for HIV, though, the Pfizer drug requires a second drug called ritonavir to make it last longer (like a booster).

COVID-19 Virus

Because both of these antiviral pills target the immune response in a general, nonspecific way (the replication process), they can work similarly against many different coronaviruses found in animals such as ​​bats, pigs, people, and mice. This is not only reason to believe these pills will probably be effective against other variants such as omicron, but it also means this scientific progress plays a role in fighting future pandemics, as well as the current one. 

While it is easy to get caught in the incessant loop of bad news concerning the pandemic, especially lately, I recommend balancing that awareness of threats with the acknowledgement of the improvements and steps forward, for everyday scientists are hard at work fighting this pandemic. In a similar lens, our work in AP Bio with beginning to understand immunology and how viruses work is our baseline in becoming the future of medicine, doctors, and scientists!

A New Way Of Detecting the COVID-19 Virus

In a study conceived by Mayo Clinic investigators it was found that Artificial Intelligence may offer a new way of detecting if a person has contracted Covid-19. Researchers found that the Covid-19 virus creates small electrical changes in the heart that Artificial Intelligence (AI) can detect and be used for a new form of a rapid, reliable test. Since Covid-19 has a 10-14 day incubation period, symptoms take long periods of time to show up. Once patients do show symptoms it is hard to access a reliable Covid test with fast results. An Artificial Intelligence enhanced EKG is a rapid and cost effective alternative for Covid testing.

Covid - 19 virus

This study was done on a racially diverse population of volunteers from 14 different countries. Patients selected had previous EKG data from when they were diagnosed with Covid-19. This data was compared with the EKG data of patients not infected by Covid-19. AI was then trained to detect the subtle changes in the heart by more than 26,000 EKG’s and tested on 7,800 EKG’s that were not previously used. The prevalence of Covid-19 was about 33% and the accuracy of the negative predictive value of the AI was about 99.2%.

For any form of Covid test, accuracy is the most important value. The study shows the consistency of biological signals in the EKG and the Covid-19 infection. To confirm that Artificial Intelligence will be a helpful factor in our fight against the pandemic, this study needs to be tested on asymptomatic people.

In AP biology class this year, my class has learned about sending signals between cells. A heartbeat happens when the SA node (pacemaker of the heart) sends out an electrical impulse.The upper chambers of the heart contract and the AV node sends an impulse into the ventricles.The lower heart chambers then contract and the cycle starts over again.

Is A Vaccine Update On Its Way?

On December 11, 2020, the Pfizer-BioNTech COVID-19 vaccine was approved for its first public use. Since that day, there have been multiple variants of the virus, varying in their mutations from the original strain. One of these strains, in particular, is the Omicron variant. This variant is a new strain of COVID-19 and was first identified on November 24, 2021, in Botswana. With the emergence of this new unknown variant, in addition to all of the past variants, has the time come for an updated vaccine that is tailored specifically to the variants? This question is explored in the Bloomberg article Third Pfizer-BioNTech Dose Is Ket To Fight Omicron’s Spread

Solo-mrna-vaccine-8

After researching the Omicron variant in relation to two doses of the COVID-19 vaccine, there was seen to be a 25% reduction in antibodies capable of fighting the virus. However, after a third dose of the vaccine, increased antibody levels close to that of those made for the original COVID-19 strain. With this information in mind, Pfizer stated that an Omicron-specific vaccine may be required. This new vaccine is projected to be ready for the public by March of 2022. The company also stated that their vaccine would change from a two-dose to a three-dose vaccine with the third shot being for Omicron. The third shot would be administered about three months after the first two doses have been given.

Fab fcfragment colors

While the public is waiting for the third dose from Pfizer, Pfizer says that people should use their current vaccine for a third dose, as it would give further protection against the virus. Then, once the Omicron vaccine comes out in early 2022, people should get a dose of that vaccine as well. This new strategy of getting the vaccine is due to new research from multiple labs on the effectiveness of the vaccine on the Omicron variant. An original observation saw a 25 times drop in antibodies, but two other labs found that there is actually a 40 times reduction with this variant. Globally, South Africa found a 41 times drop in antibodies, and a 37 times drop from a German lab. With this research, Pfizer is beginning to look into an Omicron vaccine but must find that it heavily increases protection against the new variant, and if not it will keep the current vaccine in circulation. There is also speculation about a yearly booster for the vaccine, but there must be research conducted on that as well.

Can HCQ(Hydroxychloroquine) Prevent COVID-19 Infection and Help Recovery? The Research Says “No”

Have you ever wondered what chemicals and such are being used to treat and illness you have? HydroxychloroquineWell, for treatment of the COVID-19 vaccine, one of the chemicals used is hydroxychloroquine (HCQ), also known as Plaquenil. HCQ is a immunosuppressive drug and anti-parasite that can treat and prevent malaria, lupus, and arthritis.

HCQ was used as pre-exposure prophylaxis against COVID-19 infection in healthcare workers as a study. There were 1294 participants from ages 24-38 with 61% being women. 273 (21.1%) of the participants were healthcare workers but still 83 (6.4%) of them tested positive after duty. This showed that the use of HCQ had no effect on the prevention of the COVID-19 virus.

What made hydroxychloroquine an option used in preventing COVID-19 in the first place? Symptoms of coronavirus disease 2019 2.0There are typically four phases of a more severe version of COVID-19. The first phase would be the incubation period that has a median of 5.1 days. After that is the second phase which lasts around 5-10 days where flu-like symptoms arise. These include, fever, cough, muscle pain/soreness, fatigue, nausea, and diarrhea. Up until the second phase, the severity of the illness can be considered normal. After the second phase, there is normally a progression to a hyperinflammatory acute respiratory distress syndrome (ARDS). ARDS is a life-threatening lung injury that makes breathing difficult. As the second phase progresses onto the third phase, ARDS causes dyspnea, tachypnea, and sometimes hypoxemia making a person extremely out of breath and in need for hospital care. During this third phase, a person affected severely of COVID-19 will normally have high fevers with elevated inflammatory markers and progressive formation of organ failure. For some of these severe cases of COVID-19, effective treatments were desperately needed.

From data of previous epidemics, HCQ have been widely used around the world for Ebola, H7N9 influenza, and SARS virus infection. HCQ has been used to treat a number of auto-immune diseases by raising intracellular pH and affect endosomal activity. However, in the case of COVID-19, HCQ has no positive effect in preventing the coronavirus and may even cause more harm to our bodies.

Fimmu-11-01648-g004

As an immunosuppressive drug, it made sense to give HCQ to patients with early onset of COVID-19 and as a pre-exposure prophylaxis. HCQ impacts cytokine production and suppresses antigen presentation. The medication was used in various ways: as an oral medication by itself to take before contracting COVID-19, taking it after contracting COVID-19, and combined therapy with azithromycin. None of these ways had a surprising result in preventing COVID-19 or with helping a person recover. It was then believed that the impact of cytokine production and suppression of antigen presentation may cause immunologic consequences resulting in the hampering of the innate and adaptive antiviral immune response, possible making it more dangerous with patients with COVID-19. It has been determined that HCQ is not suitable for the treatment of COVID-19.

The process of proving HCQ effectiveness in fighting COVID-19 can be related to AP Biology because of the way the medication works with the immune system. Hydroxychloroquine is a medication that can raise intracellular pH and affect endosomal activity. Acidity of cell pH and endosomes are topics that we learned first quarter. In relation to the second quarter, HCQ is a immunosuppressive drug known to impact cytokine production and antigen presentation. Cytokines and antigens are part of the innate and adaptive immune system that we learned about recently.

Page 2 of 5

Powered by WordPress & Theme by Anders Norén

Skip to toolbar