BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: chemotherapy

Hair Saving Option with Chemotherapy

Scientists have been finding a way to prevent hair loss after the painful process of cancer treatment, Chemotherapy (Chemo). Hair loss is one of the biggest feared side-effects. A recent study showed that 75% of female patients who had breast cancer feared the side effect of losing hair. Hair loss scored the highest in a Swedish nurse’s study that investigated the quality of life in patients who had breast cancer. With the help of Sung-Jan Lin, a scientist at National Taiwan University, a protein was made that could withstand the distressing effects of Chemotherapy.

There are a few other options for people receiving this treatment. Some will try to put on scalp-cooling caps to freeze the chemo drugs from entering the hair follicles. However, this process is expensive and only works for 50% of the people. The treatment could end up being longer than expected, and can cause mild to severe headaches and discomfort.

Lin describes that part of the problem is that we have such a limited knowledge of how Chemotherapy damages hair follicles.

In short, his team looked at a protein called p53. This protein functions to limit tumor growth, but also helps suppress hair growth (hair cells divide rapidly like tumor cells)

Studying P53, Lin found out that the protein was blocking a hair-promoting protein WNT3A. This stimulated his team to ask the following question. Is injecting WNT3A directly into the scalp while administering Chemo prevent hair loss?

The team decided to experiment with mice with a chemotherapy agent, and soon enough the results matched their hypothesis. One group of mice were injected with WNT3A soaked beads. And sure enough, that group sustained their hair. While the other group that was not given WNT3A loss all their hair.

Lin and his team are now working to adapt his studies on human patients. As stated by Lin it would be unsafe to inject WNT3A in bead form. As a result, they are working to create the protein in a gel or cream solution.

With this new hair saving option, the cancer treatment will seem less fearful for some patients. This treatment could be a big help for the future. Scientists are working to expand their knowledge on how to effectively provide treatment without endangering our human traits.

So after hearing all this, what do you feel about this new idea? Will the “power of proteins” eliminate other side effects provided by Chemotherapy? If so, what kinds? Let me know in the comments below.

Photo link and photographer:

www.flickr.com/photos/calliope/6025359063

Liz West

New Breast Cancer Gene Discovered

 

 

 

Pink_ribbon.svg

Today, one of the most talked about cancers is breast cancer. Breast cancer is defined as cancer that forms in the tissues of the breast. There are two types of breast cancer: ductal carcinoma, which is most common and begins in the lining of the milk ducts (thin tubes that carry milk from the lobules of the breast to the nipple) and lobular carcinoma, which begins in the lobules (milk glands) of the breast.

According to a new study done by the Wellcome Trust Sanger Institute and University of Cambridge, a gene has been identified to have a major association in aggressive subtypes of breast cancer. The research suggests that an overactive BCL11A gene causes the development of tripe-negative breast cancer.

The study was conducted in human cells and in mice. The study was important because one in five patients are affected by triple-negative breast cancer. From the conducted research, Dr. Walid Khaled discovered that by adding an active human BCL11A gene to a human or a mouse’s breast cells (in the lab) caused them to behave as cancer cells. Increasingly, Dr. Khaled concluded that “by increasing BCL11A activity we increase cancer-like behaviour; by reducing it, we reduce cancer-like behavior.”

This research and study is extremely important because from the results, the team was able to propose that BCL11A is a strong candidate for development of a possible targeted treatment. Typical treatments of breast cancer include radiation and chemotherapy as well as surgery. The most known surgeries are Lumpectomy/partial mastectomy (large portion of the breast is removed) and a full mastectomy (full removal of breasts)

I chose this article because I know many dear friends that have faced and survived the battle of breast cancer. I believe that spreading awareness and screening early is extremely important. In addition, I am very hopeful that new advances will be made so that others need not endure the excruciating fight of breast cancer.

 

Fighting Cancer with Protein P53

Despite the amazing diagnostic technologies, pharmaceuticals, and procedures of modern medecine, cancer still takes the lives of more than half a million people in the US every year. Characterized by the unmediated reproduction and metastasis of tumorous cells, the various forms of the disease have proved difficult to slow and often nearly impossible to cure. Treating cancer usually requires rigorous chemotherapy or invasive surgery, each involving painful side-affects and long recovery periods.

Chemotherapy, while effective, indiscriminately attacks cells that divide quickly. Thus, the fast-dividing cells lining the mouth and intestine as well as the cells that cause hair to grow are also affected, causing an array of side affects. Scientists have been searching for a new way to fight cancer that would only target cancer cells while letting healthy cells function unhindered. A team at University of California, Irvine may have found that method in protein P53, mutated forms of which are implicated in “nearly 40 percent of diagnosed cases of cancer.

P53 is responsible for repairing damaged DNA and causing apoptosis, or programmed cell death, in cells that are damaged beyond repair. In a mutated form, P53 does not function properly, allowing cancerous cells that would normally be destroyed to proliferate. A therapy that reactivated mutated proteins could potentially surpress tumors without causing the nasty side affects of current drugs. Also, since P53 is present in so many cancer cases, a single treatment could be used against many different forms of the affliction. However, since P53 proteins “undulate constantly, much like a seaweed bed in the ocean,” sites where medicinal compounds could bind are difficult to locate.

The UCI team had to reach across disciplinal boundaries, enlisting computer scientists, molecular biologist and others to find a usable binding site. With the help of molecular dynamics, the group constructed a simulation of P53’s movements, eventually locating a transient site that could bind with stictic acid, one of forty-five small molecules they tried. Unfortunately, stictic acid is not a viable compound for pharmaceuticals, but the scientists at UCI think that other small molecules with similar characteristics will likely have similar effects and make effective treatments.

Cancer and Fruit Flies

 

 

Photo by Malcolm NQ from Flickr

A recent study has found a way to track each step of a healthy cell as it becomes cancerous. Researchers were able to study the “genes and molecules involved in each step.”

The researchers provoked genomic instability in the cells of the fruit fly’s wing, or the Drosophila melanogaster, and allowed these cells to withstand the organism’s natural defenses. The scientists were able to see the cancer spreading throughout the cell and invading nearby organelles and cell structures. According to one scientist, Andres Dekanty, “for the first time we have a genetic model that allows us to understand the events that take place, starting from when cells begin to accumulate genomic errors until the development of a tumor.”

Furthermore, the researchers at the Institute for Research in Biomedicine believe that their research will be important for determining if cancer is caused by genomic instability. If this proves to be true, scientists and doctors will have a specific target to study, and to treat.

Researchers believe that the key to curing caner is identifying the difference between normal, healthy cells and a cell with genomic instability. Dekanty hopes that since “there isn’t a treatment available that attacks only the cells with genomic instability, if we can clearly differentiate one from the other, we’ll hopefully be able to find drugs that target them specifically.”

This study is of major importance because today, cancer treatments, such as chemotherapy have many side effects because they aim to stop cell division in both infected and healthy cells.  New, more precise treatments could stem out of this study.

Magnets: Fun Toy or Deadly Tool?

Taken by: USCPSC

Cancer is one of the most well known diseases, yet it is one of the hardest to treat. The research of different treatments for cancer is ongoing and innovative. According to a recent study in South Korea magnets may be the next step in cancer treatment. A way for magnets to assist the body in targeting and killing off cancer cells has been discovered and is being researched and developed.

A problem with current cancer treatments like chemotherapy or radiation therapy is that they can only be targeted to a certain extent. With this experimental form of cancer treatment, using magnets, the body’s natural functions are used to kill the cells in a tumor. The human body naturally goes through a process called apoptosis, or the process of programed cell death. Apoptosis is used by the body when it is first developing allowing fingers and toes to grow individually, and it is used daily to kill off skin cells that have been damaged by weather. The researchers in South Korea are using this process to target and kill off the cancer cells.

The researchers applied zinc-doped iron oxide nanoparticles to colon cancer cells. This allows for the cells to naturally bind with antibodies, which then bind to the death receptors on the cancer cells. The researchers then applied a magnetic field, which caused  the death receptors to send out a signal telling the system to attack the cell. When this occurs chemicals are sent out and the cells of the tumor that had zinc-doped iron oxide nanoparticles on them were killed.

Sadly this innovative new cancer fighting technique has its downsides. In their experiments only half the exposed cells were killed although none of the cells they weren’t targeting were harmed. And when this method was tested on zebra fish some grew abnormal tails, which means that this method may be innovative but it still has plenty of testing to go through before it will be used on humans.

Viruses: Good or Bad?

As we recently learned in class, scientists are attempting to use viruses to treat cancer and according to this article, scientists are inching closer and closer to success. The idea to use viruses to treat cancer stems from the discovery that when sick with a virus, cancer patients tended to go into remission.

Even though cancer cells can replicate quickly, they can’t defend against attacks as well as regular cells can. Thus the search is on for a virus that won’t damage normal cells but will attack cancer cells.  Many viruses were tried, for example, the “cat plague”  which was inserted into rural cats, and in most cases failed due to the return of the cancer or the development of a deadly infection.

However, in the 1990s, various steps were made by a few doctors that allowed this research to progress. First, in 1991, Dr. Martuza of Harvard Medical School  attempted using the HSV (herpes simplex virus) type 1 as a cancer fighter. He modified the virus by taking certain genes out and then injected the modified virus into mice with brain cancer. The mice first went into remission and then unfortunately died. Around the same time, Dr. Bernard Roizman of the University of Chicago found a master gene in the herpes virus that when removed could only slow tumor growth and could no longer overpower healthy cells. In 1996, Dr. Ian Mohr in NYU altered the crippled virus even more and attacked cancer cells with it until a mutant of the virus evolved and was able to replicate in those cells. Dr. Mohr and a student then made it so that the virus didn’t attack the immune system.

There are some great benefits using viruses to attack cancer. Viruses not only attack the cancer, but get stronger over time, unlike chemotherapy. They also produce an immune response that helps to attack the virus. The side effects of this viral treatment are less detrimental than those of chemotherapy . These side effects include nausea, fatigue, and aches.

Most recently, an engineered form of vaccinia by the name of  JX-594  is being tested against liver cancer and has already helped in doubling the survival rate of patients with this cancer. Though there are still hurdles to overcome, it is clear that great progress has been made thus far.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar