AP Biology class blog for discussing current research in Biology

Tag: Antiviral

“4′-FlU” – The Future of Flu Fighting!

This study conducted by researchers at Georgia State University’s Center for Translational Antiviral Research examined the effectiveness of a new potential antiviral drug, 4′-fluorouridine (4′-FlU), against influenza A viruses. Research had shown promise for 4′-FlU in combating different strains of influenza, including seasonal and pandemic viruses, in cell cultures and animal models.
The researchers investigated whether influenza viruses could develop resistance to 4′-FlU and the impact of such resistance on the virus’s ability to spread. They found that while some influenza strains developed resistance to the drug, these resistant variants were significantly weakened in animals, particularly in their ability to cause severe respiratory infections and transmit between hosts.

SARS-CoV-2 virion animation

In connection to our class, the concept of natural selection, which is a fundamental principle in evolutionary biology, is evident in the development of resistance to 4′-FlU by the influenza viruses. Through the process of random mutations shown by the drug, resistant variants of the virus emerge, highlighting the role of genetic variation in evolutionary processes. Secondly, the study underscores the importance of understanding molecular genetics, specifically the structure and function of DNA and RNA. The identification of specific genetic mutations in the influenza virus that create resistance to 4′-FlU demonstrates how changes in nucleotide sequences can lead to altered genetic characteristics, such as drug resistance. The study identified specific genetic mutations in the influenza virus that became resistance to 4′-FlU, but the researchers determined that these mutations were unlikely to have significant clinical implications. They also discovered that administering 4′-FlU at certain doses could effectively overcome moderate resistance and prevent lethal infection in mice.

Influenza Virus - 52461389748
The study shows the urgent need for new influenza therapeutics, given the limitations of current antiviral drugs, which often face challenges with viral resistance. The research provides valuable insights into the development and potential effectiveness of 4′-FlU as a treatment option for influenza, suggesting hope for improved battle against future influenza outbreaks or pandemics.


(Post includes edits suggested by Grammarly) 

Fighting the Flu: Why Kids Need More Influenza Antivirals

Influenza Virus

Influenza, otherwise known as the flu, is a very well known disease, that is unfortunately still very common. Given its commonality, there are many different ways to try and treat or mitigate the virus. Despite this fact, we can see discrepancies between guidelines and actual prescription practices for flu treatment among children, thanks to the study “Trends in Outpatient Influenza Antiviral Use Among Children and Adolescents in the United States.” 

The lead author, James Antoon, a professor and doctor at Vanderbilt, emphasizes that antiviral treatment, especially when administered early, significantly improves health outcomes in influenza cases among children. However, the study reveals that a significant proportion of children, particularly those under the age of 5 and especially those under 2, are not receiving the recommended antiviral treatments. In fact, only about 40% of children studied were treated with antivirals, despite guidelines suggesting that all of them should receive this treatment.

Interestingly, the study reveals a notable disparity in the geographic use of influenza antivirals, showing a significant difference in prescription rates across different regions, independent of flu cases.

The reasons behind the under prescription of antivirals in children is likely due to various factors, including differing perceptions about effectiveness, variations in the interpretation of diagnostic testing, misunderstanding of national guidelines, and concerns about potential adverse drug events associated with certain antivirals, such as oseltamivir.

Additionally, the study mentions a previous investigation led by Antoon that explored neuropsychiatric side effects in children diagnosed with influenza. While these events are relatively infrequent, the study observed that they occurred in both treated and untreated children.

The research emphasizes the importance of improving flu management among vulnerable children in the United States, highlighting the need for better following of guidelines regarding antiviral use in pediatric flu cases.

This study connects to a few things we’ve learned this year in our AP Biology class. The way oseltamivir works, is that once inside, your body metabolizes it, which activates the oseltamivir. Once activated, it binds to and inhibits the active sites of the enzymes responsible for spreading the flu throughout a host’s body. As we learned in AP Biology, it doesn’t completely stop the spread of the virus, but it definitely slows it down, allowing your white blood cells to eradicate the virus.

Do you think the underuse of antiviral medications in children with influenza is a widespread issue? How might this research impact pediatric healthcare practices in managing flu cases more effectively?

(Post Includes suggestions made by ChatGPT)

Understanding Merck’s Molnupiravir

Since the beginning of the pandemic, research of antiviral medicines and drugs have only become more specific with combating the Coronavirus. Merck’s new drug, Molnupiravir, was a result of pharmaceuticals amplifying research on Covid. The foreshadowing of this drug shows a bright future and an end to Covid-19 once and for all.

Merck applied for authorization first in October and many praised the new drug as a potential game-changer. Pfizer submitted their version of medication called Paxlovid in November. The Food and Drug Administration has provided emergency use authorizations for pills from both Merck and Pfizer while scientists continue to study the real-world effectiveness of both. Molnupiravir is administered as four 200 milligram capsules taken orally every 12 hours for five days, for a total of 40 capsules. It is not authorized for use for longer than five consecutive days where its use seems to be feasible to all users.

Molnupiravir works by introducing errors into the SARS-CoV-2 virus’ genetic code where it prevents the virus from further replicating. Dr. Shaw, a Yale Medicine infectious diseases specialist, explains when the drug enters your bloodstream, it blocks the ability of the SARS-CoV-2 virus to replicate, a Yale Medicine infectious diseases specialist, Dr. Shaw explains. The coronavirus uses RNA as its genetic material. The structure of Molnupiravir resembles the nucleosides (or chemical building blocks) used to make the virus’s RNA. The drug works by incorporating itself into the RNA as it’s being synthesized where it “results in many mutations, or changes in the RNA genetic code, introduced into the viral RNA,” says Dr. Shaw. “And when this RNA is translated into viral proteins, these proteins contain too many mutations for the virus to function.” If this disables replication and RNA’s ability to infect our cells, we will not be as sick from Covid no longer.

An early report showed the Merck drug cut the risk of hospitalization and death to 50% in patients who had mild-to-moderate cases. Results from the Molnupiravir clinical trial, conducted in the U.S. and other countries, suggested the drug would be effective against CDC “variants of concern,” including the Delta, Gamma, and Mu mutations. Scientists are still studying how well the drug works to treat Omicron and are optimistic since its application is the same with Omicron’s RNA.

While this is exciting news, the vaccine many researchers, scientist, and doctors say is still our first line of defense. Some are even concerned that the attention on Molnupiravir will “draw attention away from vaccination,” says Dr. Meyer. “Some people might say, ‘I’m not getting vaccinated because I’ll have access to these medications’—to this pill or to remdesivir or other treatments. But you can’t trade one for the other. If you haven’t done so already, the most important thing is still to get the vaccine.”

Powered by WordPress & Theme by Anders Norén

Skip to toolbar