BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: ALS

Potential cure to ALS, the disease that inspired the ice bucket challenge!

You all remember the ALS ice bucket challenge, that took social media by storm, in which people dumped ice water on their heads in order to raise money and awareness to ALS, a neurodegenerative disease that progressively destroys the motor neurons and eventually leads to death.

 

There is currently no cure to this horrible disease. However new genetic technology (CRISPR) may change all that.

In short, CRISPR is a new form of gene editing that allows scientists to change an organism’s DNA.

Scientists discovered that ALS is caused by a mutation in the C9orf72 gene. ALS is often caused by a significant repeat of a segment of DNA that becomes toxic. So, using CRISPR, scientists deducted which genes either protect against or cause these toxic DNA segments. This process was extremely effective and scientists found about 200 genes that affect ALS. For example, scientists found a gene that codes for a protein called Tmx2 that when removed from mice neurons caused the mice to survive whereas not removing them killed them. This means that scientists are beginning to figure out how to cure ALS.

Discoveries such as these are revolutionary as we can now find specific causes for previously fatal, cureless diseases  such as this. In addition, using this technology we can target these specific genes and save lives.

However, whenever we discuss gene editing we must ethically consider when does this become too far? Where is the line between helping to cure people and helping to destroy society by designing babies?

To answer my own question, I think it is crucial that we take any step possible to help find cures in situations such as this. That being said, there are clear limits that must be respected. The line is definitely hazy. Let me know in the comments your thoughts about gene editing!

But for now, let’s enjoy this scientific win and hope that ALS can be officially cured. Good job ice bucket challenge for bringing attention to a serious issue that may now actually be cured.

Original Article: https://www.sciencedaily.com/releases/2018/03/180305111517.htm

CRISPR The End of ALS?

ALS, amyotrophic lateral sclerosis, is a nervous system disease that weakens muscles and impacts physical functions. ALS is diagnosed in less than 20,000 people a year but there is currently no cure. Amyotrophic lateral sclerosis is caused by protein clumps in the brain which make voluntary movements progressively harder. The protein clumps destroy neurons in the brain through toxins. Scientist are yet to figure out how the toxins do this. A group of researches then decided to use CRISPR-Cas9 to get a better understanding of what is actually happening. During their research they realized that when a gene was affected it protected the neurons. It was already known that a gene called C9orf72 caused for unnatural repeating in certain parts of DNA and is the cause for the build up of proteins in ALS. The research group isolated certain genes by knocking out others. During this process they realized that when the gene Tmx2 is inactive it hindered cell deaths in mouse neurons. “If you have a small molecule that could somehow impede the function of Tmx2, there might be a therapeutic window there” said co-author Micheal Haney. Michael Bassik, Ph.D., assistant professor of genetics at Stanford and other reaserchers plan to do more studies on Tmx2 to get more detailed and accurate information. They also plan on doing CRISPR screens to find other possible causes for ALS and work on cures for other neurodegenerative disorders.

Other researchers are trying to use CRISPR-Cas9 to find a cure to ALS. Researchers are beginning to focus on editing RNA in hopes to cure a form ALS and other neurodegenerative diseases.This technique has produced mixed results. Research at the University of California, Riverside, has made progress in developing a molecule which can target EphA, this is a “gene that’s known to govern the onset and progression of neurodegenerative diseases”.

You can read more here.

ALS Patient Gets a New Chance for Communication

While many of us heard about the existence of ALS through the ice-bucket challenge two summers ago, the intricacies and details of the disease are not as well known. A diagnosis of A.L.S. (amyotrophic lateral sclerosis), or Lou Gehrig’s disease, is devastating for the patient and his/her family. As the disease progresses, the patient will slowly lose their ability to use their muscles, until eventually, they can no longer control their own body movements.

A patient with this disease often would have little hope for improvement. Recently, Hanneke De Bruijne, a doctor of internal medicine from the Netherlands who received a diagnosis of ALS in 2008, received just that: a glimmer of hope. In this article from the NY Times, Steph Yin explains the exciting technology giving this particular patient  a new way to communicate. With a brain-computer interface surgically implanted into her brain, she can utilize electrical signals to type out words on a computer screen in front of her. Incredible, right?

Taken by Dr. Frank Gaillard.

Taken by Dr. Frank Gaillard.

Nick Ramsey, one of the researchers and a professor of cognitive neuroscience, has deemed this tool a “remote control in the brain.” Using the system, De Bruijne was able to type two to three words a minute, allowing her to use it in her daily life with remarkable success.

What makes the system so ingenious is that while De Bruijne suffers from locked-in syndrome as a result of her ALS diagnosis, her brain still fires electrical signals when she feels the desire to move. The brain implant computer system capitalizes on this, allowing her to spell out her desires with a “brain click” (thinking about the hand gesture that would click that button).

While there are risks with this surgery, like any invasive procedure, the development of this new software brings hope for many ALS patients who may suffer from even more extreme locked-in syndrome, without even the ability to move their eyes. Utilizing the brain signals that still function fully allows a patient to retain control over some aspect of their life and will hopefully be able to bring light to other patients as this approach is tested further.

Other relevant articles:

The ALSA organization

2014 breakthrough for ALS

2016 Groundbreaking study signals news hope for ALS Patients

Trial for New ALS Treatment Failed

Photo by: Nemo

Biogen Idec, a drug developing company, has recently discontinued their work on a new drug that was, hopefully, going to help patients with Amyotrophic lateral sclerosis, also known as ALS or Lou Gehrig’s disease. A recent article explained that a new drug, known as dexpramipexole, was not effective in the phase 3 trial of the study.

Amyotrophic lateral sclerosis (ALS) is a disease where nerve cells “waste away and die.” These cells are unable to send messages to muscles, therefore symptoms include paralysis and muscle weakness. The progression of the disease is slow and “once the patient loses the function of muscles in the chest area, it becomes hard to breathe.” There is no known cure for this disease but scientists are looking for ways to prolong the disease.

Biogen Idec believed that the drug, dexpramipexole, was hopefully going to “slow the progression of loss of muscle function and prolong the lives of people with the disease.” While the phase 3 trial was not successful, the phase 2 trial of patients receiving dexpramipexole showed some success. 50% of the patients, in the second trial, showed a slower decline of muscular function. This was a big accomplishment for Biogen Idec but the phase 3 was not as effective. Therefore, Biogen Idec’s study involving a new treatment for ALS ended.

Even though Biogen Idec’s study was not effective, other companies have successfully found a way to slow the progression of ALS. Thus far, only one drug has been approved to help patients with ALS. This drug is known as Rilutek/Riluzole and it is only modestly effective.

Doctors are in need of a new drug that will help patients with ALS. I think its great that companies like Biogen Idec are involved in finding a way to treat this rare disease. I hope that researchers will use the information from the failed trial to find another way to treat ALS.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar