BioQuakes

AP Biology class blog for discussing current research in Biology

Author: jacuole

Trade Your Treadmill for… a Protein?

As humans, we have recognized that regular exercise has many benefits for everyday life. It helps our physique, our muscle and bone health, and it also is responsible for the release of endorphins that improve our mood. However, exercise is time consuming, and some of us just lack the motivation for regular physical exertion.  Scientists at Michigan Medicine have been researching the protein Sestrin in mice and flies, and they have found that “it can mimic many of exercise’s effects,” potentially creating a way to gain the benefits of exercise without actual exertion.

In their experiment, the Michigan scientists used two groups of flies. One group of flies was deprived os Sestrin, while the other group’s Sestrin levels were enhanced. When put through an extended period of exercise, the flies that lack Sestrin did not have any of the typical muscle development and endurance that comes from working out. The flies that received amplified amounts of Sestrin also didn’t progress. However, the Sestrin-boosted flies didn’t receive the benefits of exercise from exertion, because they had already acquired those benefits  from their increased Sestrin levels. In performing the same experiment with mice, “Mice without Sestrin lacked the improved aerobic capacity, improved respiration and fat burning typically associated with exercise.” According to the nature.com article “Sestrins are evolutionary conserved mediators of exercise benefits,” “in vertebrates, endurance training leads to increased mitochondrial biogenesis/efficiency, decreased triglyceride storage, improved insulin sensitivity, and protection of both muscle and neural functions.” Basically, if Sestrin indeed proves to be the magic exercise replacement, it could help alleviate some of the negative physical consequences of aging.

However, our scientists have 2 main problems in turning Sestrin to a mass produced supplement: it’s a very large molecule, and we are still unsure of how the body naturally produces sestrin during exercise. Therefore, we are not yet at a point where our exercise replacement is a reality, but the probability of future promising results is high.

Personally, I will have to see this protein work on humans before I take seriously the idea of an exercise replacement. A successful Sestrin supplement may be able to mimic the physical benefits exercise, but obtaining physical results through minimal work could be detrimental to the public’s general mentality. Receiving physical benefits through hard exercise teaches cause and effect, mental toughness,  the value of goals, and the satisfaction of well deserved rewards. If this supplement ends up being the fantasized work out supplement everyone is looking for, how will that result-without-the-work mentality impact how we treat other aspects of society? That’s why I don’t see this discovery as a total positive, but I’m excited to see what future studies bring in the development of this long fantasized product.

If you have anything other information or opinions on this topic, feel free to drop a comment below!

 

How Dandruff Can Lead to Crohn’s Cures

The Intro

Crohn’s disease is an inflammatory bowel disease (IBD) that causes inflammation of the digestive tract. Symptoms can include abdominal pain, malnutrition, stunted growth, and more on the gross side, diarrhea. There is no known cure for the condition, but a research team under David Underhill, “research chair for inflammatory bowel diseases at Cedars-Sinai Medical Center in Los Angeles,” has made a promising discovery in the gut microbiome. The researchers’ observations involve a microfungus present in and on our bodies, but before we unpack their findings, let’s figure out why the heck there are fungi inside our bodies and how all this relates back to dandruff!

The Mycobiome

There is a vast array of microbes that make their home in and around our person. This collection of organisms is known as the microbiome. While our microbiome consists of thousands of different microbial species, a whopping “99.9% of the total number of microbial cells belong to only a few species.” That other 0.1% of microbes is known as the “rare biosphere,” and within this diverse collection of organisms lies the mycobiome, the assortment of microscopic fungi that inhabit each and every one of us. While the microbiome has received lots of attention, especially in our gut area, research on the mycobiome’s effects on the human body is just beginning. Underhill’s team’s discovery gives us a glimpse into just how impactful these relatively rare organisms can be.

The Dandruff

So, what does dandruff from our scalp have to do with the fungi in our gut, and how does all this involve Crohn’s disease? Underhill and his researchers studied Malassezia, a fungus pretty much omnipresent in and around our bodies. It’s been known that a concentration of Malassezia on our scalps causes irritation that leads to dandruff. However, this fungus also inhabits our digestive tract. The research team found that “people with Crohn’s had high concentrations of Malassezia on their intestine walls, while healthy patients had almost none. The researchers then demonstrated that simply adding this type of fungi to the gut — at least, in mice — was enough to exacerbate the inflammation seen in Crohn’s.” Therefore, the same fungal substance that can cause minor dandruff may also be heavily responsible for a serious IBD that affects about 780,00 Americans. 

The Significance

Even though some patients may achieve permanent remission, as we noted before, there is not yet an established cure for Crohn’s disease. However, Underhill’s team’s study raises some questions that could help shape the future of IBD medical development. Could the current expensive, 60% effective anti-inflammatory medicine be replaced with simple antifungal drugs? If we prove that reducing fungus reduces intestinal inflammation, then antifungal Crohn’s cures could be accessible and affordable for thousands of people! In 5th grade, I was diagnosed with Crohn’s, and while my condition has improved, it’s far from cured. It’s exciting to hear about new discoveries that could lead to advances in treatment to help people like myself. Underhill’s team and another team of researchers in Montreal have already begun clinical trials with antifungal drugs, so depending on their results, we may be one big step closer to curing Crohn’s and other inflammatory bowel diseases alike!

I think these discoveries are important and worth talking about, so if you have anything to add, challenge, or discuss, feel free to comment below! Thanks for reading!

 

How a Dash of Salt in the Summertime Helped Bring About Life on Earth

As humans, one of the most challenging and provocative questions we can ask is how life on earth came to be. We know about evolution, survival of the fittest, the one fish brave enough to walk. But how did the first microorganism suddenly wriggle its way out the world of the inanimate and mark the beginning of life on earth? Researchers from Saint Louis University, the College of Charleston and the NSF/NASA Center for Chemical Evolution think they have a new clue regarding the Earth’s environment at the time, and it sounds a lot like barbeque and pool party weather!

One of the keys to the creation of life is proteins. Proteins are strings of amino acids held together by peptide bonds, and they are responsible for carrying out countless tasks in the cell from catalyzing reactions as enzymes to protecting against diseases as antibodies to controlling movement and muscle contractions. Previous research has found that subjecting amino acids to “repeated wet-dry cycles”creates an ideal environment for the formation of peptide bonds. The more peptide bonds, the more complex polymer proteins that form and carry out biological processes needed for sustaining life. According to our original article, “Were hot, humid summers the key to life’s origins,” scientists imagine that the pre-life climate on earth consisted of hot, sunny days broken by heavy rainstorms. However, when Luke Bryan said that “rain is a good thing,” I don’t think he was referring to the cultivation of peptide bonds, because too much rain can actually have an opposite effect on our pre-biological proteins.

Pictured above is two amino acids joining to form a dipeptide through dehydration synthesis (removing an H2O molecule to join two monomers)

While water is the basis for all biological function, too much water added to a solution can result in hydrolysis, the decomposition of polymers due to the insertion of water molecules between bonds. If the Earth’s early climate involved large rain storms, the rain would flood the amino acid mixture and prevent the formation of peptide bonds. So, what kind of climate would then be required to spark the creation of life? Angela M. Hessler, in her article “Earth’s Earliest Climate,” tells us that “evidence points to an unfrozen — perhaps balmy — Archean Earth” due to “100–1000 times more CO2 than present atmospheric level,” which gives the Earth a “greenhouse atmosphere.” This greenhouse climate consists of high temperatures and humid weather- basically summer weather! This humidity in the air allows the amino acids to receive the ideal amount of water for forming complex proteins. However, our researchers have also discovered another factor that aids the formation of proteins, the process’s own sort of catalyst that pairs perfectly with the humid climate of pre-biological Earth.

Deliquescent minerals are salts that absorb humidity out of the air and then dissolve. If deliquescent minerals are present while amino acids bond into polypeptides, they can regulate the wetness of the environment in which polypeptides form, creating a perfect environment for the creation of proteins! I guess we can take the Bible that much more literally when were were told, “For you were made from dust, and to dust you will return.”

Above is dipotassium phosphate, a highly deliquescent mineral that is likely to have been present during the first formation of polypeptides millions of years ago.

While to some it may seem inconsequential, this discovery is important! Think about it: whenever we talk about evolution, we talk about inheriting traits from our ancestors. But we never talk about our oldest ancestor. The ancestor that has no ancestors because they are the first thing to live on this Earth! This discovery gives concrete evidence for a plausible theory regarding the birth of life on this planet, that one cell that fathered everything that now sees and breaths and strives to reproduce. This article gives us the farthest glimpse possible into the past, and with this new information, we can start to learn more about how life rose from the ground to survive and thrive on Earth.

If you have any other ideas or remarks, please feel free to comment on this post! I would love to hear what you all have to say about this exciting, new discovery!

 

Powered by WordPress & Theme by Anders Norén

Skip to toolbar