BioQuakes

AP Biology class blog for discussing current research in Biology

Author: chasmmogamy

Stem Cells and CRISPR

Many cells can reproduce but there are a few types of cells that are not able to reproduce. One of these types are nerve cells, the cells that cary messages from your brain to your body.  There are many ways nerve cells can be destroyed or damaged, by trauma or drug use.  Millions of people are effected by losing nerve cells and for so long no one could think of a way to recreate them; until the discovery of stem cells.

After fertilization, and when the newly formed zygote is growing, it is made up of a sack of cells.  Some of these cells are stem cells which develop according to their environment. Because of the behavior of stem cells, scientists theorized that if they placed stem cells in the brain or spinal chord, two areas that have an abundance of neurons, the stem cells would turn into a neuron because of the environment it was in.  But, when they tried introducing stem cells into the body, the immune system treated them as an foreign body, as it should. Our immune system has to treat anything that does not come from our body as an enemy or we could get extremely sick.  However, the downside is organ transplants, blood transfusions, etc. are dangerous because they could cause a serious immune rejection.

Someone experiencing a spleen transplant rejection

Cells have a surface protein that displays molecular signals to identify if it is self or foreign.  Removing the protein causes NK (natural killer) cells to target the cell as foreign. Scientist haven’t been able to figure out how to make a foreign cell not seem foreign until Lewis Lanier, chair of UCSF’s Department of Microbiology and Immunology, and his team found a surface protein that, when added to the cell, did not cause any immune response.  The idea would be to use CRISPR/cas9 to edit the DNA of the stem cells, and in doing so would remove the code for the current surface protein and add the code for the new surface protein.

After the scientists had edited the stem cells, to have the correct signal protein, they released them into a mouse and observed that there was no immune rejection. Truly amazing. Maybe brain damage could be helped by this science one day. Tell me your thoughts on Stem Cells in the comments!

For more information, please go check out the primary source of this article.

 

 

Click Here to Learn About the Tomato’s Fancy New Makeover

The sun rose on a dimly light Monday morning when Adriano Nunes-Nesi, Lázaro E.P. Peres, Agustin Zsögön, Lucas de Ávila Silva, Ronan Sulpice, and Emmanuel Rezende Naves published their groundbreaking discovery that could revolutionize the cultivation of chili’s forever.   These insanely talented and well established scientists figured out how to use the CRISPR-Cas9 editing tool to turn a tomato into    a chili.

Capsaicinoids are what give peppers their heat and when these scholars of science mapped the tomato’s and chili’s genomes, they saw that the tomato has genes that, when transcribed, produce these spicy and hot capsaicinoids.

The reason why this is important is because the chili’s cultivation process is extremely tedious and requires many specific conditions, not to mention it having a small yield.  Since the yield of tomatoes is 30x that of the chili, using the CRISPR-Cas9 tool, they could change the shape and taste of the tomato to that of a chili. The price of a chili peppers, per kg, compared to tomatoes is roughly 60 cents higher. It may not seem a ton, but in bulk orders, it quickly adds up.

Lázaro E.P. Peres, who is aProfessor of Plant Physiology at the University of São Paulo and one of the scientists on the team, says, “The proof of concept here is that we can transfer the unique thing endemic to a less-produced plant into another plant that is more widely produced”.  The paper states the tomato “is highly amenable to biotechnological manipulation”. This would drive the price of the chili down which would help markets, restaurants, and Gardners worldwide.

The only issue to this is the publics opinion. For years, the already established “organic” companies having been labelling genetically modified food as unhealthy compared to non-GMO foods.  This claim is simply outright false.  “Any plant or animal product is full of DNA that our body readily digests, messing with one or two genes isn’t going to impact human health. The only way GM food could affect human health is if the modification somehow produce a protein product that was actively toxic to humans.”  This quote is from an article by the Genetic Literacy Project, which could be seen as having bias towards GMO foods, however their mission says,”is to aid the public, media and policymakers in understanding the science and societal implications of human and agricultural genetic and biotechnology research and to promote science literacy.”  All they are interested in doing is educating the public because so many people have been lied to by big organic corporations and the media to prevent customers from eating GMO products.  What would they have to gain by saying they are safe when they are not?    If the public can get passed the idea of genetically modifying foods, I believe turning a tomato into a chili pepper would save much money from hundreds of thousands of businesses– big or small.

What do you guys and gals think of GMO products?

For more information, please go check out the primary source of this article and the researchers report

 

 

This Easy Method Will Make Sure You Never Get Strep Again

More than 3 million people a year get diagnosed with strep throat, however since it is a minor illness that is very easily treated, people do not see the issue with getting sick almost every year. Because bacteria reproduce in just a few days, many generations of bacteria go by very quickly; and every time they reproduce, they are also evolve.  Meaning, every time one takes antibiotics, the bacteria becomes more and more resistant to it, until we can’t kill them anymore with the same antibiotic.

For many humans around the world, the thought of not being able to fix a simple bacterial infection with an antibiotic is quite frightening; however recent discoveries about the human microbiome puts this fear away.

Bacteria at the microscopic level

There are many helpful bacteria that live in the throat and mouth. Most of these helpful bacteria are probiotics.  The probiotic that specifically attacks strep, is actually another strain of strep called Streptococcus salivarius K12. This probiotic produces two lantibiotics that attack Streptococcus pyogenes, the species that are responsible for the known strep throat.

From this knowledge, scientists did an experiment that gave one group a tablet that, when chewed, released billions of colonies of S. salivarius K12 and gave another group a tablet that did nothing. The group that received the probiotic, showed a 90% reduction in strep episodes than the group that received nothing. This information also helped decrease the time on antibiotics for strep by 30 times.

You can buy doses of S. salivarius K12 here if you are interested in not only staying away from strep throat, but also improving your overall oral microbiome.

If you are interested in reading more about not just the mouth and oral human microbiome, but the whole entire human microbiome; click here!

 

Advancement in Modern Antiseptics

Before the 1870’s, sanitation was a huge problem in the growing world.  Doctors would clean tools with wine or hard alcohol, people’s teeth were falling out from not cleaning them, and people were getting infections from surgery at an alarming rate, etc.  Since so many surgeries resulted in infections, they then had to amputate that area.  Amputations had a 45-50% success rate.  This all means that if you needed surgery, you probably would die.  It wasn’t until many advances in microbiology that Joseph Lister introduced Carbolic Acid as an antiseptic in medicine.  He discovered that it cleaned surgical instruments extremely well, and prevented many infections from surgery.   This discover made the maternal death rates drop from 18% to 1%.  Later, another antiseptic, Listerine, was made by another scientist for a general sanitation, in which it was named after Lister, the father of antiseptics. 

Joseph Lister, Father of Antiseptics

You might be thinking, “All of this happened in the past, and our antiseptics are so good now, why do should I care?”  As it turns out, modern antiseptics don’t actually sterilize things 100%, and although they do a pretty good job, and there are still new antiseptics being discovered every year.  One of these recent discoveries is an antiseptic for caesarean deliveries.  A new solution of Chlorhexidine and alcohol (2% chlorhexidine gluconate with 70% isopropyl alcohol) cuts cesarean section surgical site infections by half compared with the usual solution of iodine and alcohol (8.3% povidone-iodine with 72.5% isopropyl alcohol). Dr. Methodius G. Tuuli, who is a professor at Washington University in St. Louis, is responsible for this amazing discovery and has spoken at the Annual Pregnancy Meeting sponsored by the Society for Maternal-Fetal Medicine, and had his work published in the New England Journal of Medicine.  

The experiment itself consisted of 1,147 patients who delivered a baby through a c-section.  The doctors then randomly used either the new solution or the old alcohol/iodine solution. Besides that, nothing else changed in the procedure for postpartum women; and then 30 days after being discharged from the hospital they were given a call to see if the surgery site had developed an infection. The only downside that is known about Chlorhexidine, is that it supposedly causes more allergic reactions than the iodine solution; however none were observed during the experiment. 

Antiseptics are often overlooked when it comes to the best inventions or discoveries in science because it is so mundane.  People never stop and think what life was like before we had all these amazing soaps and sanitary solutions. To me, it is mind-blowing that less than 150 years ago, if a person needed surgery on any of the limbs,  the odds are they would probably get an infection, then have to get it amputated, which gave them a 50% chance to live.  Do you readers agree that Antiseptics have been our greatest discovery? Let me know in the comment below!

Powered by WordPress & Theme by Anders Norén

Skip to toolbar