BioQuakes

AP Biology class blog for discussing current research in Biology

Author: balsamic

#EpigeneticInheritance

Professor Marcus Pembrey of the University College of London transcribes the complexity of epigenetics into an understandable definition, simply put as “a change in our genetic activity without changing our genetic code.” The study of “epigenetic/transgenerational inheritance” has been a field of increasing popularity within the last decade, as studies and further research are beginning to show evidence of lifestyle stresses carrying over in the genome of each generation. Now, this is not to say that our grandparents way of living changed our DNA coding but rather potentially altered the way certain genetic information is or is not expressed.

 

To further explore the possibility of epigenetic inheritance, a laboratory in Boston conducted an experiment on three generations of mice.  A pregnant mouse was ill-fed in the late stages of pregnancy and as expected the offspring were born relatively small and later in life developed diabetes. However, the F2 generation experienced a high risk of acquiring diabetes, despite being well nourished. Another study on mice showed similar results; after a father was artificially taught to fear a particular smell, the offspring of that mouse also demonstrated a fear to the same smell.

 

Although the excitement over the groundbreaking research of epigenetics seems promising, researchers are still working to compile a stronger foundation of evidence to prove that this phenomena actually occurs in mammals. Professor Azim Surani of the University of Cambridge fully supports the idea of epigenetic inheritance in plants and worms, but has yet to commit to the same notion in mammals, as their biological processes differ greatly.

 

Human Brain Gene Implant Greatly Effects Mice

A study conducted at MIT tested the effect of human Foxp2 gene on mice and observed their ability to navigate through a maze. Foxp2 is found in both mice and humans, but the human form of the gene is related to  learning and language but it has been hypothesized by neuroscientist Ann Graybiel of MIT’s McGovern Institute for Brain Research that perhaps the human gene is related to sub-conscious actions based on environmental cues.

The maze lead to a pile of food, and throughout the maze the scientists placed visual and sensory cues that lead to the end of the maze and to the food. At the end of the study, the results showed that the genetically modified mice would complete the maze 3 days faster than the wild, control mice when visual and sensory cues were both involved.

The significance of the study is the potential connection between specialized learning and the Foxp2 gene. Although the difference between learning how to run a maze and leaning how to speak is massive, tests like this one are the beginnings to analyzing the true significance of Foxp2.

Mice

Protein Structure May Lead to Cure for Ebola

For those who haven’t been keeping up with the latest in viral outbreaks, Ebola has been spreading throughout West Africa and has already taken the lives of 2,600 people since the outbreak in March 2014.  According to the World Health Organization , there are currently no certified vaccines or treatments for Ebola but a new breakthrough may have answers to developing a cure or vaccine for the deadly disease

Scientists at the University of Virginia have gotten their hands on a crystalized structure of the Ebola Nucleoprotein C-Terminal domain, which is an important protein used in replicating the virus.  The tertiary fold of the C-terminal is “unique in the RNA virus world,” claims structural biologist Dr. Zygmunt Derewenda, and this unique fold could ultimately lead to the foundation of drugs to prevent further infections.

The team was able to produce the protein by using E Coli as the protein factory.  So far, the protein demonstrates traits that are extremely unique and unlike other known proteins.  Evidence thus far has shown that the viral nucleoapsid is self assembled by the domain.  Insights and new research that the UVA team is conducting is paving the way to an Ebola anti-viral drug.

 

Ebola Virus Particles

 

Powered by WordPress & Theme by Anders Norén

Skip to toolbar