In AP Biology, we learned that photosynthesis has evolved in plants as a means of converting water, sunlight energy, and carbon dioxide into glucose and oxygen, but also into plant biomass and the food we eat. Therefore we also know that the photosynthesis process, especially in C3 plants, is highly inefficient as only about 1% of sunlight energy is actually incorporated into the plant. Researchers at the University of Riverside and the University of Delaware have actually discovered a new way to bypass the reliance on biological photosynthesis and have devised a method of using artificial photosynthesis to produce food independent from sunlight. Isn’t that amazing!

The artificial photosynthesis process involves a two-step electrocatalytic procedure that transforms carbon dioxide, solar panel-generated electricity, and water into acetate, which is a salt and chemical compound (C2H3O2). Sec-Butyl acetate 3D ball(Electrocatalysis is a catalytic process that requires oxidation and reduction reactions through the transfer of electrons). Food-producing organisms consume the acetate in the dark to grow. This method significantly increases the conversion efficiency of sunlight into food, achieving up to 18 times greater efficiency. An integral component of this process is the electrolyzer device, which employs electricity to convert carbon dioxide into essential molecules for the food-producing organisms.

Green algae, yeast, and fungal mycelium were among the various food-producing organisms cultivated in the dark, confirming the efficacy of the artificial photosynthesis process. The production of algae using this technology is about four times more energy-efficient, while yeast production is approximately eighteen times more energy-efficient than growing it with the traditional biological photosynthesis methods.

Artificial photosynthesis offers a potential solution to the challenges posed by climate change in agriculture. By freeing crops from reliance on sunlight, artificial photosynthesis opens the door to possibilities for growing food under difficult conditions such as climate-related issues like drought, floods, and limited land availability. Isn’t the establishment of artificial photosynthesis an amazing feat! Feel free to leave a comment on my post and, if you do, list one fact that you found really interesting about artificial photosynthesis!

Print Friendly, PDF & Email