New Developments In CRISPR Gene Editing Technology Show Promising Advances In Possible COVID-19 Antiviral Pill

CRISPR Gene Editing. If you have never heard of it, don’t worry, I hadn’t either. When google searching CRISPR Gene editing, I went straight to Wikipedia for the simple answer that it is a procedure done in molecular biology, in which the genomes of a living organism can be modified with extremely high precision. One of its many applications is the treating and prevention of disease, enabling researchers to edit DNA and use the natural defense system of bacteria to target and destroy the genetic material of viruses. In a new study from this summer, Dr. Sharon Lewin and her team of researchers at the Peter Doherty Institute for Infection and Immunity at the University of Melbourne believe they may have harnessed CRISPR’s gene editing abilities to block the replication of COVID-19. 

Very similar to the replication of DNA, RNA replication begins with a single strand of “Template” RNA. In DNA, because it can only be replicated in one direction (5’-3′), and the strands run antiparallel, each strand is built in opposite directions creating one leading strand and one lagging strand. However, RNA only needs one strand made because it is single-stranded instead of a double. In SARS-CoV-2, an enzyme called RNA-Dependent RNA Polymerase adds nucleotides in the 5’-3′ direction, replicating the template RNA. Because humans have DNA, we don’t copy RNA; instead, we transcribe it to make proteins. Therefore this RNA replication process does not occur in humans and only in viruses.

Lewins’ team designed the gene editing to target single strands of RNA, like those found in COVID-19. CRISPR is most commonly associated with Cas9, an RNA-guided enzyme that cleaves foreign nucleic acids. However, Lewin and her team used a different enzyme, Cas13b, which could cleave RNA instead. Targeting specific sites on the RNA strands of SARS-CoV-2, Cas13b binds to the RNA and destroys the part of the virus needed to replicate, “Once the virus is recognized, the CRISPR enzyme is activated and chops up the virus,” said Lewin. She continues to explain that although the COVID-19 vaccines are highly effective, there is still a clear and urgent need for treatment once the disease is contracted. The ideal treatment would be an antiviral drug that could be taken shortly after the patients tested positive for COVID-19, “That’s what we hope to achieve one day with this gene scissors approach.” 

CRISPR Cas9 technology

Having written in previous blog posts about my mother’s struggles with COVID-19, my dad also had a very different yet real struggle. Like most people, my dad, having somehow not contracted COVID from my mom at the beginning of quarantine, was very fearful of getting sick himself. Fortunately, my dad has still never had COVID (knock on wood). This is great because he has remained healthy; however, it also had downsides. For my brother and me, being both kids and relatively healthy, when we contracted COVID in mid-August, it was nothing more than a rough cold. A cold that, after ten days, not only was gone but enabled me to feel some sense of temporary immunity to the virus and allowed me to feel comfortable going out with friends and returning to some level of normalcy. My dad never got this. Because he never contracted COVID, he lived a completely secluded life until this past February (when he gave up and began going out in public). If my family and I went to a mall, he would wait in the car. If we ate out, he would wear a mask the whole time and not eat until we got home. The fear for my dad was not specifically getting covid but not having some antiviral drug to take once he contracted the virus. A solution like Dr. Lewins would have been and still would be a life-changer for many families who still live in fear of getting sick from COVID-19.  

Although this breakthrough in RNA CRISPR technology is remarkable, the study was performed in lab dishes and is still waiting for testing on animals or humans. Additionally, CRISPR technology medicines have not been approved to treat any diseases. Unfortunately, we are probably a couple of years away from a widely available treatment. 

Print Friendly, PDF & Email