As it has been for the past few years, COVID-19 is the talk of the town. However, just when things seemed to be dying down, a new variant made its way into our lives. It goes by the name “Omicron”.

Unlike the past two variants, Delta and Mu, Omicron presents a whole new dilemma in the fight against COVID-19. After Delta took the world by storm with significantly greater infection rates than Mu, seemingly nothing could get worse. However, over 30 mutations to the spike proteins of the virus now trumps Omicron above all other variants. Identified in South Africa on November 24, 2021, Omicron has already made its way to many other countries around the world, including the US.

The threat of Omicron derives from its ability to resist the effects of the antibodies of the vaccine due to the changes in the protein structures. As we learned in our AP Biology class recently, the vaccine works by stimulating the production of plasma B cells, which secrete antibodies to identify and neutralize the antigen of the COVID-19 virus by recognizing the spike proteins, as well as B memory cells that exist to prevent further infection of the virus. The many changes to the spike protein make the antibodies unable to properly detect and neutralize it, allowing for the virus to continue to spread throughout our bodies. Virologist Penny Moore warns of the reduced effects the vaccine will have against Omicron, as well as the exponentially faster infection rates that pose threat to the world.

6VSB spike protein SARS-CoV-2 monomer in homotrimer

A recent study from a South African virologist, Alex Sigal, isolates blood samples from 12 Omicron infected patients who have been vaccinated with the Pfizer vaccine. The study shows that the antibodies from the vaccine are nearly forty times less effective against Omicron than the other two variants. This uncovers that the vaccine may not be efficient enough to combat the new virus. Sigal’s experiment also found that people previously infected with the virus held stronger immunity to Omicron than those with the vaccination. This is due to the fact that natural B memory cells made are able to evolve for multiple months to help fight against COVID-19 while B memory cells from the vaccine only evolve for a few weeks. Though, the experiment was not done with enough patients to make a certain conclusion.

Although, there is a glimpse of hope to retain some immunity against Omicron using the booster shot. Pfizer-BioNtech research has indicated that the third dose of the vaccine can produce antibody levels against Omicron that closely resemble the antibody levels of only two shots against the prior variants. Scientists have begun to branch off from the traditional concept of stimulating production of plasma B-cells to create antibodies in hope to find a new way to trigger the immune system to adapt to new COVID-19 variants. Biologist Jesse Bloom suggests a deeper dive into the function of T-cells, particularly cytotoxic T-killer cells, and their ability to destroy cells already infected with the virus.

Omicron poses severe potential threats to the state of the world with its fast infection rate and immunity to the vaccine. The studies of the few infected patients with Omicron do not seem to promising, but not enough has been collected about Omicron to determine its true potential. The only thing we can do now is hope for the best!

 

 

Print Friendly, PDF & Email