CRISPR

What is CRISPR?

As the world becomes more technologically developed, CRISPR is a new and upcoming technique to genetically edit genes. Being able to alter DNA sequences and revise gene roles, scientists now have the ability to correct defects, prevent diseases/mutations and improve genes overall.  As time goes on, scientists now feel that they are ready to genetically alter humans.

This image represents what CRISPR is capable of. The two wrenches represent that CRISPR edits the DNA strands and creates new and improved DNA.

How does CRISPR work?

CRISPRs are specialized stretches of DNA recognized by the protein Cas9. Cas9 is an enzyme that acts like a pair of molecular scissors, capable of cutting strands of DNA. Without that enzyme, CRISPR would not be successful.

CRISPR stands for “clusters of regularly interspaced short palindromic repeats.” It is a specialized region of DNA with two obvious characteristics

  1. the presence of nucleotide repeats and spacers.
  2. Repeated sequences of nucleotides — the building blocks of DNA — are distributed throughout a CRISPR region.

Spacers are bits of DNA that are interspersed among these repeated sequences.

***According to livescience.com, there is a built-in safety apparatus, which guarantees that Cas9 will not cut anywhere in a genome. Short DNA sequences become tags and stay adjacent to the target DNA sequence. If the Cas9 complex doesn’t see a short DNA sequence next to its target DNA sequence, it won’t cut.***

Is this really safe for humans?

Not too long ago, a study by Columbia University Medical Center was published in May, in the journal Nature Methods, about this “revolutionary” CRISPR gene-editing technique. It claimed that CRISPR caused unwanted and dangerous mutations and left the medical community baffled. The paper questioned how effective gene-editing technology is and called for a reassessment of the technique’s safety. However, this publication has to do with how CRISPR was first tested: 3 mice and very controversial results. Editage.com stated that “two of the three study subjects, the CRISPR-edited mice, happened to be more closely related and thus shared more mutations. Therefore, the paper claimed that “the premise of the old study was incorrect.”



If you have the choice, will you use CRISPR to design your children? Comment!

Print Friendly, PDF & Email