The CRISPR-Cas9 genome editing system has transformed into an even better version of itself. A new, elegant technique, coined by researches at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT, has resolved one of the most reoccurring technical issues in genome editing.

https://commons.wikimedia.org/wiki/File:Crystal_Structure_of_Cas9_in_Complex_with_Guide_RNA_and_Target_DNA.jpg

Primarily, the CRISPR-Cas9 system works to specifically modify a cell’s DNA. CRISPR is dependent on protein Cas9, as it is specialized for cutting DNA. The DNA, at a location identified by a RNA’s sequence matching the target site, is altered by Cas9. Though it very efficient at cutting its target sites, there is a large complication in the process. Once the Cas9 is inside the cell, it can also bind and cut additional sites that are not targeted. Because of this, undesired edits are produced which can alter gene expression or kill off a gene completely. These setbacks can lead to cancer or other problems. Feng Zhang, along with his colleagues at MIT, reported that by just changing 3 out of the approximately 1,400 amino acids composing the Cas9 enzyme from S. pyogenes, a considerable reduction of “off-target editing” to undetectable levels are observed.

This newfound information was derived from studying the structure of the Cas9 protein. Since DNA is negatively charged, it binds to a positively charged groove in the Cas9 protein. The scientists predicted that by replacing some of the positively charged amino acids with a neutral charge, there would be a decrease in binding to “off target” sequences than to “on target” sequences. By mutating three amino acids, their technique proved to be successful.

The team is calling this newly-engineered enzyme “enhanced S. pyogenes Cas9” or “eSpCas9.” It’ll be particularly useful for genome editing that requires precise specificity and it is said to be available for researches worldwide.

I believe that this newfound resolution for the CRISPR-Cas9 genome editing hurtle is a huge game changer. This charge-changing approach might also be able to be used for other experiments involving RNA-guided DNA targeting enzymes. Ethical and societal concerns have also risen due to the idea of rapid and efficient genome editing. The eSpCas9 is highly beneficial in the scientific community, however there is a lot more research needed to be done in order to be used clinically.

 

Original article can be found here.

Print Friendly, PDF & Email