BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: sports

Microbiomes… an Athlete’s Key to Success!

For years, scientists have been trying to see what makes a professional athlete different from someone who didn’t quite make the cut. Is there something that professional and elite athletes have that other athletes or inactive individuals don’t? Is it possible to give a mediocre athlete a supplement to improve their performance? Dr. Jonathan Schieman and George Church from the Wyss Institute at Harvard University believe the answer is yes, and they think they’ve found the answer, microbiomes.

Dr. Schieman and his team conducted thorough research on NBA players, marathoners, and Olympic rowers to see if there was a common microbiome that these high-level athletes all shared that sedentary individuals did not. After immense amounts of testing and making sure the proper controls were in place to avoid confounding, and lurking variables, Schieman and his team were able to find one particular organism that was elevated in the guts of athletes’ bodies more than sedentary individuals.

Schieman and his team were able to isolate a particularly abundant organism in athletes that feeds off lactic acid. Lactic acid is a naturally occurring chemical compound that generates during particularly intense and strenuous muscle exercise. Thus, the researchers believe that the organism they isolated has a particularly important effect on making athletes stronger. In addition, the researchers have recently conducted a new study on rugby players and found that rugby players have more of this organism in their body as well as a more diverse range of microbiomes than a sedentary individual.

The microbiome space is particularly new, so one cannot conclude that these findings will be significant to athletes in the future, a realization that Schieman has come to terms with. However, if Schieman and Church find more conclusive and concrete evidence that these, and other, organisms can yield a much better athlete, the sports world could change forever.

What do you think? Can microbiomes be used to make more elite athletes? Only time will tell.

————————–

The research is from Jonathan Schieman and George Church from the Wyss Institute at Harvard University. A comprehensive scientific journal entry has not been released to the public due to intellectual property concerns, as the findings are part of a privately-owned company.

Image: https://commons.wikimedia.org/wiki/File:EscherichiaColi_NIAID.jpg

I Got it From My Mama . . . and My Papa

Photo Credit: By Me

Ever wonder why Justin Timberlake could belt it out or how come Usain Bolt is so fast? Well the answer’s pretty unexpected, but not too surprising: genetics. Now while genetic prowess is not the sole key to these superstars’ successes, recent studies have shown that certain genes are attributed to superior athletic performance and feel of rhythm.

Recent studies have show that babies are born something called beat induction, the ability to follow a beat. Prior to this study, it was thought that basic music skills like rhythm were solely learned or an offshoot of language. However, scientists were able to study two and three-day-old babies’ reactions to changes in rhythms and they found that babies brains experienced  a momentary disturbance, known as a mismatch negativity (caused by the failure of an expected stimuli to occur), when the beat changed. It was impossible that the newborns could have learned beat induction in a few days, so it was obvious that it is an ability passed down genetically. Beat induction is a relatively new genetic trait , one only found in humans; even our closest primate relatives do not have this skill. It is even thought that beat induction may have been an adaptation gained to help humans with conversational communication.

Geneticists have been doing more and more groundbreaking research about the connection between inherited traits that may cause offspring to be more athletic or suited for competition at a higher level. For example, in 2003 Australian geneticists identified a gene called Actinen A (ACTN3), which codes for a protein that helps build fast-twitching muscles and muscle fibers that move with greater force, thus speeding up leg movement. The more fast twitching muscles an athlete has, the better they are at burst energy sports like sprinting, football, and baseball. Recent reports show that 70% of Jamaicans have the ACTN3 gene, which could explain Jamaican sprinters like Usain Bolt’s success at the 2008 Beijing Summer Olympics. Similarly, Olympic swimming champion, Michael Phelps, may have also inherited advantages for movement in the water. Phelps has many characteristics commonly attributed to Marfan Syndrome. Marfan Syndrom is a connective tissue disorder that strengthens the body’s structures and could possibly explain how Phelps swims faster than any other human being. Researchers are also currently studying the gene which codes for slow-twitch muscle fibers that are advantageous for endurance sports. By identifying these genetically inherited advantages could radically change athletic competition, allowing athletes to create specific training regiments beneficial to their unique genetic composition.

Photo Credit: Wikimedia Commons

So research tells us that both beat induction (musical rhythm)  and athletic prowess can be inherited, but the question is how crucial are these inherited traits to success in a given field? What other factors like environment, mentality, mental endurance, or determination play into the molding of a virtuoso or olympian? What really makes a superstar a superstar?

 

For more:

http://www.wired.com/wiredscience/2009/01/babybeats/

http://www.wired.com/wiredscience/2008/08/jamaican-sprint/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+wiredscience+%2528Blog+-+Wired+Science%2529

http://www.wired.com/wiredscience/2008/12/a-gene-test-of/

http://sports.yahoo.com/top/news?slug=ycn-10259115

http://www.genetic-future.com/2008/08/gene-for-jamaican-sprinting-success-no.html

http://www.sciencedaily.com/releases/2011/07/110718121555.htm

Powered by WordPress & Theme by Anders Norén

Skip to toolbar