BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: pathogens

New Reason to Watch Your “Diet”: The Human Gut Microbiome and Competition

The human body consists of approximately 100 trillion microbes, and in the digestive tract of the human gut alone it is estimated that there are trillions of microbes. Recent studies done by Athena Aktipis, a researcher at Arizona State University’s Biodesign Institute, have shown that people’s dietary choices either help to increase the cooperation between gut microbes and their human hosts, or they could potentially lead to conflict between the two.

The microbiota consists of bacteria, and the human microbiota contains about 500 different species of microbes. There is a possibility that the composition of these microbes could affect behavior, susceptibility to allergies, and even likelihood for obesity. According to several previous studies, exposure to intestinal bacteria prevents allergies in infants and young children. This has been determined by examining the noticeable difference between the compositions of intestinal bacteria in children who have developed allergies and children who have not. The current study further looks at cooperation and competition between human cells and other cells that coexist with them. Cells are cooperative between the human cells and gut microflora when bacterial cells produce energy and vitamins. It also is beneficial when bacterial cells help to detect pathogens that are dangerous to the host. Conflict on the other hand is more likely to occur when the needs of microbes and the needs of the host are at “cross-purposes”, or they contradict one another. This internal conflict could lead to chronic afflictions such as inflammatory diseases that are caused directly by the body’s attempt to maintain dominance in this “power-struggle” within the host.

These recent studies have also shown that sugar and fat are most likely contributors to conflicts that arise between host cells and microbes. This is due to the fact that fats and simple sugars also can be used by microbes such as E. coli, which further contributes to the conflict. The results of these studies suggest that a diet consisting of low fiber and abundant sugar leads to the conditions where conflict takes place between human cells and microbes. When their interests clash or coincide, the cells in the body trigger immune responses that lead to different afflictions that include a wide range of diseases, some of them being inflammatory. Similar to fats and simple sugars, iron is also potentially dangerous in the sense that a pathogen could steal iron from host cell proteins which would ultimately compromise the health and nutrition of the host. According to the studies, it is recommended to maintain a diet that has high nutritional density but also low concentrations of pathogens in order to promote cooperation and prevent any competition or conflict that could damage your overall health and wellness.

 

Further reading:

Gut microbiota in 2016: A banner year for gut microbiota research

The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice

Stop! Don’t Smell the Roses!

800px-SneezeDuring the flu season, we all try to be a little more vigilant when it comes to germs. Even as a self-proclaimed “germaphobe,” I was not as lucky to escape the evil grasp of the disease. Aside from recognizing  the obvious perpetrators, who include those who refuse to cover their mouths, people who breathe just a little too close to me, and  grimy freshmen, I wanted to find out a little more about the  origin of diseases.

 An interesting area of research regarding the topic is being pioneered by Scott McArt and Lynn Adler of the University of Massachusetts Amherst. They are investigating how great a role flowers play in the transmission of diseases. Around 190 studies having to do with flowers and diseases they pass on have been dated back to the lat 1940’s. This research is important because it can “help efforts to control economically devastating pollinator-vectored plant pathogens.” Still, this topic is very new and not as conclusive as many would think. Despite this fact, “eight major groups of animal pathogens that are potentially transmitted at flowers” (by bees and other pollinators) have been discovered. It is unknown whether pathogens are transmitted via the chemical or physical traits of flowers. 

The main goal of the study was to attention to the need to further explore the relationship between flowers, their pollinators and diseases, as many people have expressed concern for “the pollinator declines caused in part by pathogens.” Do you agree that this is an area worth researching?

Osmosis Jones: Fact vs. Fiction

 

The Cells of the Immune System
Photo from: http://commons.wikimedia.org/wiki/File:Innate_Immune_cells.jpg

Osmosis Jones is the story of a white blood cell police officer, Ozzy, who teams up with a cold pill, Drix, to save Frank from a deadly virus. Of course being a children’s movie Osmosis Jones isn’t a completely accurate depiction of the human immune system, or body in general, but just how accurate is it?

In the movie the major conflict arises when Frank, the human, eats an unsanitary egg. On this egg lives the virus, Thrax, who is a deadly pathogen. So far the movie checks out. In the human immune system the first line of defense are barriers between the inside of the body and the outside world. Some of these barriers include the skin, mucus membranes, tears, saliva, sweat and stomach acid. In the movie the virus does penetrate one of these barriers, in this case the mouth, to enter the body. This is accurate to how a virus may enter the human body.

After this the movie becomes less and less accurate to how the human immune system functions. Although there is detection of a pathogen the only response Frank’s immune system has in the movie is through the use of the police force, the white blood cells. This is completely inaccurate to how the human body fights off a pathogen. When the body detects a pathogen (virus or bacteria) mast cells release histamines to dilate the blood vessels (this is never shown in the movie, especially because the blood vessels are shown as highways, but thats another matter altogether). The next step in the immune response is macrophages come and engulf infected and dead cells and they release cytokines that attract other immune cells to the area. Neutrophils and natural killer cells then kill the infected cells. The closest thing to this second line of defense is the police force and their communication. They have radios and ways to communicate to call for backup, although it is extremely inaccurate to the way the immune system really functions.

The third line of defense that the Human body uses is specific defense. This includes B and T cells and the steps taken to target the pathogen specifically and the infected cells. Through the processes of Cell-mediated response and Antibody-mediated response the immune system targets the infection and destroys it. Both of these processes are not depicted in the movie in any form. This along with the ending (don’t worry I won’t spoil it) are both inaccurate to anything that could happen in the human body.

So Osmosis Jones isn’t the most scientifically accurate movie of all time, but that doesn’t stop it from making a great movie. The inaccuracies in the film can be excused by the fact that it is a children’s movie and not a new theory about the immune system. I mean how many kids would want to sit though a movie that was 100% accurate? You would lose all of the car chases, the drama, the suspense, the mucus filled dams, and the explosions. Overall I really enjoy Osmosis Jones, although I don’t recommend using it to study for your next science test.

 

 

Powered by WordPress & Theme by Anders Norén

Skip to toolbar