BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: nematodes

The Network to Longer Life

 

A recent collaborative study between scientists at the Buck Institute for Research on Aging, the MDI Biological Laboratory, and the Nanjing University in China found an interesting synergetic pathway between the IIS (insulin signaling pathway) and TOR pathway by studying C.elegans: nematodes that share many genes with human beings.

The short lifespan of C.elegans (three to four weeks) allowed the scientists to identify the cellular pathways that regulated aging. The scientists were able to genetically change the IIS and TOR pathways by using a double mutant on the C.elegans. The alterations were expected to yield a 130% increase in the lifespan of the C.elegans, since altering the IIS pathway yields a 100% increase and altering the TOR pathway yields a 30% increase. However, the math didn’t work out, and that’s a good thing! Surprisingly, the lifespan of the C.elegans increased by 500%.

So, even though the scientists discovered the pathways that regulated aging in C.elegans, the nuances of these interactions are still unclear. A paper discussing this topic relates longevity to the mitochondria’s role in maintaining homeostasis.  Jarod A. Rollins, one of the authors of the paper, hopes to further clarify and investigate the role of mitochondria on aging in his future research.

Even still, the discover of these cellular pathways could lead to longer lives for humans. Pathways such as these were passed down to humans by evolution (conserved) so, the 500% increase in longevity that occurred in C.elegans after alteration could also occur in humans. Although the way in which these pathways affect each other is unclear, we now know that multiple genes and cellular pathways contribute to the aging process.

How do you think that the IIS and TOR pathways affect each other? If our lifespans are expanded in the future, what will be the moral and societal implications?

 

“What Does Light Taste Like?” I Don’t Know, Ask A Nematode.

csiro_scienceimage_2818_group_of_nematodes

by Entomology on scienceimage.csiro.au

The vision of light is a beautiful blessing brought to us by our sight receptor cells. Since the sight of light is so great, the taste of it must be even better. Though we don’t know the taste of light, there may be a very tiny someone who does, the nematode. In the article Tasting Light: New type of photoreceptor is 50 times more efficient than the human eye, published on sciencedaily.com, it states that, at the University of Michigan, researchers have discovered a new photoreceptor amidst a bunch of taste receptor cells in nematodes and other invertebrates. This new receptor is called, LITE-1. Because of the receptor’s unusual location, it is believed that these animals have an ability to taste light. New studies have also shown that LITE-1 is no average photoreceptor.

LITR-1 was discovered in nematodes, which are eyeless roundworms only measuring about a millimeter in length. You might be thinking, “Nematodes don’t have eyes. So why would they need photoreceptors?” Shawn Xu, a senior study author who has a lab at University of Michigan Life Sciences Institute, where he is also a faculty member, demonstrated in his lab that even though nematodes are  eyeless, they still move away from flashes of light. The purpose of photoreceptors is to transform light into a signal that is usable for the body. This fact leads scientists to believe that it’s possible for that the roundworm uses this photoreceptor, located among its taste receptors, so that it can convert light into something that the worm can taste in order to perceive it. Xu also says that “LITE-1 actually comes from a family of taste receptor proteins first discovered in insects.”

Though these nematodes are extremely tiny, their peculiar LITE-1 photoreceptors are nothing to be looked over. Something that makes LITE-1 strange is that it has the astounding ability to absorb UVA and UVB light. Another unusual trait of LITE-1 is that it is unlike other photoreceptor proteins. Photoreceptors consist of two parts: a base protein and a chromophore. Breaking these two sections apart does not destroy all of their ability to function. However, LITE-1, when broken apart loses its ability to absorb light entirely.

LITE-1 also has a range possible future uses, such as being applied as a sunscreen that can absorb harmful rays or being used to promote the development light sensitivity in new types of cells. The future of LITE-1 shows great promise  and could open doors for the potential of other animals, besides invertebrates, to have a new and possibly delicious way of sensing light.

 

http://www.cell.com/cell/abstract/S0092-8674(16)31518-5

http://www.natureworldnews.com/articles/32317/20161119/animals-taste-light-new-type-photoreceptor-found-invertebrates.htm

 

 

Powered by WordPress & Theme by Anders Norén

Skip to toolbar