AP Biology class blog for discussing current research in Biology

Tag: Genome

CRISPR/Cas9 Provides Promising Treatment for Duchenne Muscular Dystrophy

There are nine kinds of muscular dystrophy and of these, Duchenne MD is the most common severe form of childhood MD. It affects about 1 in 5000 newborn males, only in very rare cases has it affected females. DMD is a genetic disorder that causes progressive muscle degeneration and weakness. Patients usually die by age 30 to 40.

DMD is caused by the absence of a protein, dystrophin, that helps keep muscle cells intact. In 1986 it was discovered that there was a gene on the X chromosome that, when mutated, lead to DMD. Later, researchers discovered that the protein associated with this gene was dystrophin. From this information, we can tell that this disorder is sex-linked, which explains why women are mainly carriers.

No one has found an absolute cure for this genetic disorder until now. Even in recent years, people have discovered treatments that will make patients’ lives more bearable, but never reverse the disorder. As a result of these advances, mostly in cardiac and respiratory care, patients are able to live past teen year and as long as in to their fifties, though this is rare. Although there are still drugs being tested like Vamorolone (a “dissociative steroid,” is an anti-inflammatory compound), more treatments on the molecular level are now being considered. However, thanks to recent discoveries and research with the new genetic technology, CRISPR/ Cas9, scientists may have found a treatment for DMD.

This new approach to gene correction by genome editing has shown promise in studies recently. This particular correction can be achieved in a couple ways: one is by skipping exon 51 of the DMD gene using eterplirsen (a morpholino-based oligonucleotide). Studies over four years show prolonged movement abilities, and a change in the rate of decline compared to controls. The newest approach to gene correction using CRISPR/Cas9, which the article I’m writing about focuses on, was performed in this study as next described: the CRISPR/Cas9 system targets the point mutation in exon 23 of the mdx mouse that creates a premature stop codon and serves as a representative model of DMD. Multiple studies in three separate laboratories have provided a path and laid the groundwork for clinical translation addressing many of the critical questions that have been raised regarding this system. The labs also discovered by further demonstrations, that this is a feasible treatment for humans. Functional recovery was demonstrated in the mice, including grip strength, and improved force generation- all of which are very important and hopeful discoveries. It is estimated from these studies that this new method will pass clinical trials and go on to benefit as many as 80% of DMD sufferers. Even greater success rates are expected if this is performed in young and newborn DMD patients.

Gaining a CRISPR Understanding

There have been some very exciting, recent biological findings involving gene editing. The CRISPR-Cas9 findings allow for the exact and purposeful changes to the genome of a cell. CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats, and it is used in bacteria and archaea as a way to protect the bacteria from intruding genetic material. Essentially, CRISPR is used to remove a faulty gene and put another in its place. This is exciting because in humans, this technology could be used to remove extremely harmful DNA from our bodies, only to be replaced by healthy DNA. This method could then be used to cure cancer. In fact, another genome editing technology, called TALEN, was actually used to cure  an 11 month old girl named Layla who had what doctors thought was an untreatable form of leukemia. Described as “biological scissors”, doctors editing genes in cells in the immune system. The new genes then hunted down the dangerous red blood cells that were putting Layla’s life at risk. What is so exciting about CRISPR, however, is that unlike TALENS, which used proteins to edit genes in a very time consuming process, CRISPR uses nucleic acids such as RNA, which are significantly easier to use. Ultimately, these findings should bring a lot of good to the world and are a promising step towards curing cancer and other dangerous diseases.CRISPR-Cas9_mode_of_actionImage creator unknown.


HIV Infecting a Cell

CRISPR-Cas 9 is an extremely advanced gene editing tool. This tool has efficiently created ways to make precise and targeted changes to the genome of living cells. However, in a study in the journal Cell Reports, scientists from the McGill University AIDS Center in Canada discovered drawbacks in using CRISPR to treat HIV. Instead of simply removing the virus from affected cells, the process of using CRISPR can also strengthen the infection by causing it to replicate at a much faster rate.

HIV has always been a popular disease to conduct research on. Scientists are constantly attempting to come up with ways to kill HIV. Several cures to HIV have been developed such as various as antiretroviral drugs, however, these medicines stop being effective after the patient has ceased to take them. As scientists have started to utilize gene editing tools to remove HIV they have been noticing the huge drawback. They realize that while the gene alteration allows the virus to be killed off in some cases, the resulting scar tissue can lead to the infection becoming stronger! Kamel Khalili, a scientist at Temple University, pointed out that the key to eliminating HIV could lie in attacking the virus at different sites using CRISPR.

Link to Original Study

Link to Original Article 

Link to Original Photo

CRISPR: Is Science Going Too Far?

CRISPR is a some-what new genetic tool in the field of science to edit human embryos. Using CRISPR, scientists can edit the genes of organisms more precisely than ever before. It uses RNA and an enzyme that slices up invading virusesF. One use of this new technology is to fix mutations that cause genetic diseases.


Ethical concerns arose in April of 2015 when Chinese research used CRISPR to edit nonviable human embryos. In addition, some fear that the use of CRISPR to give the embryo traits not found in their genetic code can lead to a obsessive gene culture like the one found in Gattaca. This ethical debates caused scientists to meet at an international summit hosted by the United States National Academies of Sciences and Medicines, where the scientists discussed the ethical concerns of CRISPR but agreed to continue researching it cautiously.

In addition, some argue that using CRISPR for gene editing defeats the sacredness of the human genome and is unnatural. To this point, Sarah Chan from the EuroStemCell argues, “There is nothing sacred or sacrosanct about the genome as such. The human genome – the genome of humanity as a whole, and the unique individual genome we each possess – is merely the product of our evolutionary history to date”. From this point of view, the genome is merely a record of one’s history, but to some religious groups it is a symbol of life which should not be tainted with.

So readers, what do you think? Should we use this tool to help cure treatable diseases, or does this new technology cross the line between scientific mechanisms and morality? What type of genes should this new tool be allowed to edit?


Other sources

Epigenetics – Exercise Runs In The Family

It is common fact that people who exercise frequently are more likely to live a longer healthier life, but now new studies show that if a person exercises it can also result in a better life for his or her children and even grandchildren. Before the study of epigenetics people always thought the genome they are born with it the genome they are stuck with. However new science has shown exercise not only changes the outward appearance of our muscles and overall physical health, but also changes our DNA.

Exercise, astonishingly, can effect gene shape, function, and turn them on and off. Scientists now know that genes can actually be quieted or amplified through exercise because biochemical signals are sent out every time a person exercises. This is where epigenetics comes in. Epigenetics doesn’t simply change the gene all together, but instead works its magic on the outside of each gene through a process called methylation. A cluster of atoms surround the genes either denying or amplifying biochemical signals. Scientists believe that even one day of exercise can change methylation patterns.


One study done by scientists at the Karolinska Institute in Stockholm put the theory of exercise and epigenetic’s to the test. They studied 23 young and healthy men and women. They asked all the participants to work out half of their lower body for three months. This way each member of the study was his or her own control and experimental group. Obviously, after the three months each members leg that was worked out was stronger than the other, but what was much more intriguing was the results at the molecular level. The scientists found significant methylation changes in the cells of the leg that were worked out, averaging 5,000 sights on the genome where there was a new methylation pattern. Many of these methylation patterns were changed on enhancers, which are important for amplifying gene expression. The genes that were most affected were those that play a role in energy metabolism, insulin response, and inflammation within muscles. Exercise, along with many other healthy lifestyle tasks, has shown to cause changes in a persons epigenome. Changes that make a person healthier, but perhaps even more significantly, can make his or her children and grandchildren healthier.


The Harm Stress Causes

Recently scientists have begun to discover why stress can have a negative effect on the human body. Although stress is needed when dealing with situations which require hormones to trigger a fight or flight, consistent stress can lead to a multitude of health problems. Chronic stress can lead to mental instability, and an increased risk in heart attacks, strokes, infection, etc. The decrease in health is due to inflammation and warped genetic material caused by epigenetics (chemical interactions that activate and deactivate regions of a genome to carry out specific functions). Recently scientists have discovered that  changes in epigenetics can affect activity levels in genes which directly change responsibilities of certain cells including immune cells. The stress causes a genetic response that deactivates certain areas of a genome which stops an immune cell from working properly, which of course leads to an increase in diseases that cannot be properly taken care of. Hopefully, as we continue to understand epigenetics, we will be able to take appropriate steps that will both further our understanding of the human genome, as well as help increase the longevity and immune system of individuals.

Epigenetic breakthrough: A first of its kind tool to study the histone code



Scientists at the University of North Carolina have recently made a breakthrough in the study of epigenetics, particularly enzyme modification of histones. Histones, the structures to which our DNA binds in the nucleus, play a pivotal role in gene expression. In other words, histone and enzyme interaction control which genes are expressed in which cells during certain times. Epigenetics is the study of how this process works. Tightening or loosening histones can turn a certain gene off or on. The study of this process has been difficult given the size of the genome and number of different histone-enzyme interactions dispersed through the sizable sequence of DNA. The Enzymes place specific chemical markers on the histones that cause the gene regulation to occur, but scientists have been unable to determine which enzymes affect what genes and how. However, the scientists at UNC have recently conducted a study with the fruit fly genome that has given them a large amount of data. The fruit fly genome contains all of its epigenetic markers in the same place. The scientists were able to insert synthesized gene regulating enzymes in place of the originals and determine the function of each individual enzyme by simply observing what was affected by the new enzymes. This research is crucial for the understanding of how the human genome is regulated, possibly leading to the cure for many illnesses.

Article Link:

Identical Twins, Identical Lives, Different Disease

Jack and Jeff Gernsheimer are identical twins. Jack has Parkinson’s disease, and his twin Jeff does not. Up until recently, because they have identical genomes, it would have been a mystery as to why Jack could develop Parkinson’s but not Jeff. However, with the discovery of epigenetics, scientists know that genes alone cannot explain why some people get Parkinson’s and other do not. While there are some genetic mutations linked to Parkinson’s, 90 percent of cases are “sporadic”, meaning that the disease did not run in the family. Even twins often do not develop Parkinson’s in tandem. Naturally, if genes don’t explain the development of Parkinson’s, scientists look to environment. There are several environmental factors that are known to link to the disease. People who were POW’s in WWII, for example, have a higher rate of developing Parkinson’s. But, and here’s the interesting part, Jack and Jeff have lived almost identical lives. For almost all of their lives, they have lived less than half a mile apart. Throughout their lives, they have been exposed to the same air, water, pesticides, etc. When they grew up, they built homes five minutes apart (by walk) on their father’s farm in Pennsylvania. Then, when they entered the professional life, they co-founded a design firm, working with their desks pushed up against each other.


This anomaly, where a pair of humans exist with the same genetics and the same environment yet only one of them got sick is a research “bonanza” for scientists. All expected variables are being held constant, thus whatever is left must be deeply linked to the origins of Parkinson’s. However, there was a small difference in their lives that could provide insight into this anomaly. in 1968, Jack was drafted into the army and Jeff was not. This led to a series of unfortunate events in Jack’s life: first he served two years stateside in the military, got married, had two children, became involved in a long divorce, and suddenly his teenage son died. After this traumatic event, Jack went on to develop Parkinson’s, glaucoma, and prostate cancer, none of which Jeff has.

Jeff and Jack have been more than willing to undergo several studies in hope of finding something that could alleviate Jack’s Parkinson’s. The first study involved collecting embryonic stem cells from the twins. The benefit of stem cell cultures is that they act similarly to how they would in the body even though they are in a petri dish. The mid-brain dopaminergic neurons grown from Jack’s cells created abnormally low amounts of dopamine. Jeff’s produced normal amounts. Surprisingly, even though Jeff showed no signs of Parkinson’s, both twins had a mutation on a gene called GBA. This gene is known to be associated with Parkinson’s. As a result, both of their brain culture cells produced half the normal amount of beta-glucocerebrosidase, an enzyme linked to that gene. Instead of answering questions, this study only raised more to the fascinating case of Jeff and Jack.

I want to add a bit about how Jack’s son died, because it is unimaginably tragic and can show you just how much Jack had to face. Especially if we are considering Jack’s trauma as a contributor to his development of Parkinson’s, it is important to know the story. When Gabe, Jack’s son, was 14 in 1987, he became fascinated with the Vietnam War. Like any good father, Jack rented his son some movies on the war. One of those being The Deer Hunter, in which there is a scene where two prisoners of the Viet Cong are forced to play Russian Roulette. Gabe told his friend that if it were him, he wouldn’t just sit there. He would rather just get it over with. With that conversation, Gabe got his dad’s pistol, that he knew was hidden in the closet drawer, put one bullet in the chamber, put the gun to his head, and shot.

Jack rarely shows emotion. This “pressure cooker” way of dealing with things could explain his illness. Jeff thinks that the parkinson’s is a physical manifestation of how Jack deals with stress, rather how he doesn’t deal with stress. The connection between stress and disease is a very active research topic. And while their lives were very similar, if compared, Jack’s is by far the life with a more stressful environment. Some research might suggest that this stress differential can have a relation to Parkinson’s disease. In 2002, neuroscientists at UPitt subjected rats to stress, and they found that the stressed rats were more likely to experience damage to their dopamine-producing neurons than the non-stressed rats. This led to the term “neuroendangerment”, which means “rather than stress producing damage directly and immediately, it might increase the vulnerability of dopamine-producing cells to a subsequent insult.”

Another hypothesis as to what caused Jack’s Parkinson’s is that it could be linked to chronic inflammation.  Chronic inflammation is the mechanism by which stress can create neurodegeneration. Evidence that suggests this could be the case in Jack and Jeff is presented in their skin. Jack has psoriasis, a condition linked to chronic inflammation, and Jeff does not.

To this day, the search for what caused Jack’s Parkinson’s continues. Last year, NYSCF scientists conducted a study on the twins’ stem cells. They found a few functional differences between their cells. After finding the GBA mutation, they searched harder for other clues as to what might differentiate their brains. They screened 39,000 SNV’s, single nucleotide variants, which are instances where a single nucleotide in the human genome has been altered (either switched, deleted, or duplicated). They found 11 SNV’s, nine of which are linked to Parkinson’s disease. However, all 9 were found in both twins, meaning that this did not explain why Jack was sick and Jeff wasn’t.

Finally, they were able to uncover a relevant difference. Jack had high levels of MAO-B, which is involved in the breakdown of dopamine, whereas Jeff’s levels were close to normal.This hypothesis supposed that there exists a possible molecular mechanism by which stress could lead to neurodegeneration. What’s nice about this finding is that it could present a possible treatment for Parkinson’s. MAO-B inhibitors exist and are actually drugs currently on the market. They were given to Jack, and while it’s too soon to see the effects and to recommend them as treatment for Parkinson’s disease, it’s definitely a start.



Professor Marcus Pembrey of the University College of London transcribes the complexity of epigenetics into an understandable definition, simply put as “a change in our genetic activity without changing our genetic code.” The study of “epigenetic/transgenerational inheritance” has been a field of increasing popularity within the last decade, as studies and further research are beginning to show evidence of lifestyle stresses carrying over in the genome of each generation. Now, this is not to say that our grandparents way of living changed our DNA coding but rather potentially altered the way certain genetic information is or is not expressed.


To further explore the possibility of epigenetic inheritance, a laboratory in Boston conducted an experiment on three generations of mice.  A pregnant mouse was ill-fed in the late stages of pregnancy and as expected the offspring were born relatively small and later in life developed diabetes. However, the F2 generation experienced a high risk of acquiring diabetes, despite being well nourished. Another study on mice showed similar results; after a father was artificially taught to fear a particular smell, the offspring of that mouse also demonstrated a fear to the same smell.


Although the excitement over the groundbreaking research of epigenetics seems promising, researchers are still working to compile a stronger foundation of evidence to prove that this phenomena actually occurs in mammals. Professor Azim Surani of the University of Cambridge fully supports the idea of epigenetic inheritance in plants and worms, but has yet to commit to the same notion in mammals, as their biological processes differ greatly.


Does long-term endurance training impact muscle epigenetics?



Epigenetics translates to “above” or “on top of” genetics. To be more specific, Epigenetics is the study of how modification of gene expression can cause changes in many organisms.

A new study from Karolinska Institutet in Sweden explores the theory that long-term endurance training alters the epigenetic pattern in the human skeletal muscle. The team that conducted the research also explored strong links between these altered epigenetic patterns and the activity in genes controlling improved metabolism and inflammation.

The study was conducted using 23 young and healthy men and women. The men and woman would perform one-legged cycling – where the untrained leg would be the control of the experiment. Four times a week and over the course of three months, the volunteers would participate in a 45 minute training session. Though skeletal muscle biopsies, supervisors would measure their markers for skeletal muscle metabolism, methylation status of 480,000 sites in the genome, and activity of over 20,000 genes.

At the end of the study, the researchers concluded that there was a strong relationship between epigenetic methylation and the change in activity of 4000 genes in total. Epigenetic methylation is defined as the “addition of a methyl group to a substrate or the substitution of an atom or group by a methyl group. ” Moreover, it was determined that methylation levels increased when involved in skeletal muscle adaptation and the metabolism of carbohydrates. However, methylation levels decreased in regions associated to inflammation.

Furthermore, Carl Johan Sundberg found that “endurance training in a coordinated fashion affects thousands of DNA methylation sites and genes associated to improvement in muscle function and health.” He believes that this determination could be vital to understanding the treatment of diabetes and cardiovascular disease as well as how to properly maintain good muscle function throughout life.

This article relates very much to our work in class as we learn the Molecular Genetics Unit. It connects because we are learning what happens when mutations occur in one’s genome and the impacts those mutations have on someone. For example, cancer is one of the most researched and explored topics in regard to how modification of gene expression alters organisms. Oncogenes and Tumor suppressor genes have vital impacts on cellular division, changes to cellular function, and the growth of tumors.

Bacteria become ‘genomic tape recorders’, recording chemical exposures in their DNA


MIT Engineers have developed a way to create genomic tape recorders out of the Bacteria E. Coli. Timothy Lu, an engineering professor at the university describes the method by which they altered the bacterial DNA in order to allow it to store information. The researchers engineered the cells to produce a recombinase enzyme which can insert a certain sequence of Nucleotides into the genome. However, the trait is useful because the enzyme is activated by specific stimuli. In order to retrieve the information the researchers can either sequence the genome and look for the specific code or look for the trait expressed by the targeted gene by using antibiotics. This process will be useful in the future because of its ability to store long term biological memory. Also, this process transcends previous limitations of genome storage as it is now able to indiscriminately store data as opposed to previous methods that were only able to identify a specific stimulus.

Article Link:

Useful Links:

Image Link:

Is it Really in Your Genes?

Over and over again, we have been told that our personality traits, our idiosyncrasies, our weaknesses, and our merits are all because of our genome.  Supposedly, if someone studies our DNA, they will know exactly the type of person we are, but is that really true?  According to new research, it’s not.  Researchers have discovered that is extremely common for a person to have mosaicism, or multiple genomes.  In other words, chimeras make up a higher fraction of people than scientists originally thought.  Some have many variations, or mutations, in certain parts of the body, and some people even have genomes that are from other people.  People can acquire a different set of genes along with their original genes as early as in the womb.  Previously, there were just hints about the idea of multiple genomes, but the hints have turned into definite statements.  The evidence of multiple genomes is changing the way scientists think. Links between rare diseases and multiple genomes are becoming apparent.  After figuring this out, scientists are figuring out links between more common disorders and genome multiplicity.  Although many forms of cancer and other diseases are linked to mosaicism, most instances of multiple genomes are benign.  It is also changing the way that forensic scientists view DNA evidence in crime investigations.  The biggest change of all is perhaps that scientists now have to consider that DNA from a finger prick may not be the same DNA in a muscle cell or brain cell.  This means that scientists can’t tell what is happening in all the organs just from a simple blood test or test from one organ.  They can’t be certain of what is happening in other parts of the body.  However, scientists are hard at work discovering more powerful ways to investigate our multiple genomes.

HeLa Cells Sequenced!

Photo By: University of Arkansas
Wellcome Trust

The immortal cell, also known as HeLa cells, have been used by scientists for years for various medical research. But, until today the genome of HeLa cells was never known. Jonathan Landry and Paul Pyl, from the European Molecular Biology Laboratory in Heidelberg, performed the study to sequence Henrietta Lacks‘ genome, and what they found was quite remarkable. They found striking differences between her cells and the cells of a normal human being. The genome had abnormalities in both chromosome number and structure. They also found that countless regions of the chromosomes in each cell were arranged in the wrong order and had extra or fewer copies of genes, all telltale signs of chromosome shattering. Chromosome shattering has recently been found to be linked to 2-3% of cancers. Seeing as how Henrietta Lacks’ cells were taken from a cervical tumor, this is not a surprising find. However, because her genome had never been sequenced this was all new to Landry and Pyl. They said, “The results provide the first detailed sequence of a HeLa genome. It demonstrates how genetically complex HeLa is compared to normal human tissue. Yet, possibly because of this complexity, no one had systematically sequenced the genome, until now.” Another scientist, Lars Steinmetz, who led the project, added, “Our study underscores the importance of accounting for the abnormal characteristics of HeLa cells in experimental design and analysis, and has the potential to refine the use of HeLa cells as a model of human biology.” Although this study is nowhere near groundbreaking, it still helps to highlight the importance of the extensive differences that cell lines can have from their human references.

For more information on this study and HeLa cells in general, you can go to:


GATTACA review

Who ever knew a movie staring Jude Law, Uma Therman and Ethan Hawke does not just explore romance and drama but also takes a look into the revolutionizing and weary scientific future our world has yet to see!  The movie, GATTACA(standing for the 4 DNA bases-Guanine, Adenine, Thymine, Thymine, Adenine, Cytosine, Adenine), starts with the birth of Vincent Freeman, an ordinary child just like you and me.  But unfortunately for him, Vincent falls way below average in his society that revolves around eugenics.

I belonged to a new underclass, no longer determined by social status or the color of your skin. No, we now have discrimination down to a science. –Vincent Freeman in GATTACA

This discrimination that Vincent is referring to is based on ones genetic profile.  In the GATTACA world, the creation of a child occurs in a lab, where there parents can choose what genes they want and don’t want their child to inherit, making for one, almost genetically perfect kid.  In the movie, they have facilities that resemble bank tellers but are in fact genetic “profilers”.  One can bring a strand of hair they found to the facility and receive a print out of that persons genetic profile, along with it stating if that person is Valid(genetically engineered) or invalid(ordinarily created).  Because Vincent was not created this way he is forever categorized as In-valid, causing him to have limited options in life, like not getting hired.

I don’t want to give away more of the story, but it goes into deep investigation of what this world, that potentially can one day happen, would be like.  It questions the morality and ethics behind genetic modification, profiling and discrimination.  It also shows a very depressed world devoid of joy.

In today’s world, we already have genome services similar to the ones in GATTACA. The company 23andMe can create your genetic profile with a swab of your DNA.  You can find out what your genetic ancestry is life, what disease you are at risk for, why you like the foods you like and so on.  Some people are very hesitant to viewing their genetic profile. after reading this article, of a women who had her genetic profile made through 23andMe, do you think you would want yours made?  Why or why not?

Link to Photo:
Photographer: wonderferret

Genome Project Helps Connect Ethnicity to Diseases

Though people from all over the globe share over 99% of the same DNA, there are subtle differences that make us all individuals

Scientists at the Washington University School of Medicine in St. Louis have started the “1,000 Genomes Project” in which they will decode the genomes of 1,000 people from all over the world in hopes of finding genetic roots of both rare and common diseases worldwide. On October 31st, the results of DNA variations on people from 14 different ethnic groups were published, but the scientists hope for the project to expand to involve 2,500 people from 26 different world populations. According to Doctor Elaine Mardis, co-director of the Genome Institution at Washington University, “[scientists] estimate that each person carries up to several hundred rare DNA variants that could potentially contribute to disease. Now, scientists can investigate how detrimental particular rare variants are in different ethnic groups.”


We are One

Everyone on earth share 99% of the same DNA. That means you, your best friend, your mortal enemy, your boyfriend/girlfriend, next door neighbor, and The President of the United States all share 99% of your DNA. However, there are rare variants that occur with a frequency of less than 1% in a population that are thought to contribute to both rare diseases and common conditions (i.e cancer, diabetes). The rare variants explain why some medications do not effect certain people or cause nasty side effects (i.e insomnia, vomiting, and even death).


The goal of the “1,000 Genomes Project” is to identify rare variants across different populations. In the pilot phase of the program, researchers found that most rare variants different from one population to another, and the current study supports this theory.


The Study

Researches tested genomes from populations from the Han Chinese in Beijing (and the Southern Han Chinese in China) to Utah Residents with ancestry from Europe to the Toscani people of Italy to the Colombians in Columbia. Participants submitted an anonymous DNA sample and agreed to have their genetic material on an online database. Researchers than sequenced the entire genome of each individual in the study five times. However, decoding the entire genome only detects common DNA changes. In order to find the rare variants, researchers sequences small portions of the genomes about 80 times to look for single letter changes in the DNA called Single Nucleotide Polymorphisms, or SNPs.


The Results and Importance

The Study concluded that rare variants vary from one population to another. Researchers found a total of 38 million SNPs, including 99% of the rare variants in the participants’ DNA. In addition, researchers found 1.4 million small sections of insertions or deletions and 14,000 large sections of DNA deletion. The “1,000 Genomes Project” is incredibly important in medical science. It now allows researchers to study diseases, such as cancer, in specific ethnic groups. I personally think this project in incredibly important. As an Ashkenazi Jew from Eastern Europe, my family has a medical history of certain cancers and diseases. With the results of the “1,000 Genome Project,” researches could potentially find out why, and maybe even find a cure for some of these diseases.

Powered by WordPress & Theme by Anders Norén

Skip to toolbar