BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: Genes (Page 1 of 2)

GATTACA is Here!

            In August of 2017 Scientists finally had figured out how to successfully edited genes in human embryos in order to treat serious disease-causing mutation using advanced CRISPER/Cas9. This is a  major milestone as it brings scientists closer to the reality of being able to genetically engineer babies in order to re

File:CRISPR-Cas9-biologist.jpg

Photo by J Levin W

pair faulty genes. This concept has always been feared due to the lack of success and safety of previous genetic tests, however, this study proves that scientists can now successfully edit genes.“We’ve always said in the past gene editing shouldn’t be done, mostly because it couldn’t be done safely,” said Richard Hynes, a cancer researcher at the MassachusettsInstitute of Technology who co-led the committee. “That’s still true, but now it looks like it’s going to be done safely soon,” he said, adding that the research is “a big breakthrough.” Genetic testing has also been regarded as unethical due to the possibility of eugenics, in which wealthy families would pay to have their embryos adjusted to get enhanced cosmetic traits such as height and muscle mass. “What our report said was, once the technical hurdles are cleared, then there will be societal issues that have to be considered and discussions that are going to have to happen. Now’s the time.” This successful study has come out only months after a national scientific committee recommended new guidelines for modifying embryos in which they strongly urge gene editing be used solely for severe hereditary medical conditions.

Crispr is coming soon to hospitals and medical facilities near you

In 2013, researchers demonstrated a type of gene editing ,called Crispr-Cas9, which could be used to edit living human cells. This means that DNA could be altered. It has been tested in labs, but now it is going to be tested on humans.
Crispr Therapeutics applied for permission from European regulators to test a code-named CTX001, in patients suffering from beta-thalassaemia, an inherited blood disease where the body does not produce enough healthy red blood cells. Patients with the most severe form of the illness would die without frequent transfusions.
If the trials are successful, Crispr, Editas and a third company, Intellia Therapeutics, plan to study the technique in humans with a bigger range of diseases including cancer, cystic fibrosis, hemophilia and Duchenne muscular dystrophy.

Since China is more lenient when it comes to human trials, several studies are already happened, but there was no conclusive data.
Katrine Bosley, chief executive of Editas, says the field of gene editing is moving at “lightning speed”, but that the technique will at first be limited to illnesses “where there are not other good options”.

The reason for this is because, as with any new technology, scientists and regulators are not fully aware of the safety risks involved. “We want it to be as safe as it can, but of course there is this newness,” says Ms Bosley.

Although Crispr-Cas9 has not yet been trialled in humans in Europe or the US, it has already benefited medical research greatly by speeding up laboratory work. It used to take scientists several years to create a genetically modified mouse for their experiments, but with Crispr-Cas9 “transgenic” mice can be produced in a few weeks.
Despite the sucesses, the field of gene editing has been hampered by several setbacks. Editas had hoped to start human trials earlier, but was forced to move the date back after it encountered manufacturing delays. Crispr has lost several key executives in recent months, while Cellectis had to suspend its first trial briefly last year after a patient died.

Crispr is in its beginning stages ,and although it is not yet mainstream, it is expected to be completely groundbreaking in the field of medicine.

Potential cure to ALS, the disease that inspired the ice bucket challenge!

You all remember the ALS ice bucket challenge, that took social media by storm, in which people dumped ice water on their heads in order to raise money and awareness to ALS, a neurodegenerative disease that progressively destroys the motor neurons and eventually leads to death.

 

There is currently no cure to this horrible disease. However new genetic technology (CRISPR) may change all that.

In short, CRISPR is a new form of gene editing that allows scientists to change an organism’s DNA.

Scientists discovered that ALS is caused by a mutation in the C9orf72 gene. ALS is often caused by a significant repeat of a segment of DNA that becomes toxic. So, using CRISPR, scientists deducted which genes either protect against or cause these toxic DNA segments. This process was extremely effective and scientists found about 200 genes that affect ALS. For example, scientists found a gene that codes for a protein called Tmx2 that when removed from mice neurons caused the mice to survive whereas not removing them killed them. This means that scientists are beginning to figure out how to cure ALS.

Discoveries such as these are revolutionary as we can now find specific causes for previously fatal, cureless diseases  such as this. In addition, using this technology we can target these specific genes and save lives.

However, whenever we discuss gene editing we must ethically consider when does this become too far? Where is the line between helping to cure people and helping to destroy society by designing babies?

To answer my own question, I think it is crucial that we take any step possible to help find cures in situations such as this. That being said, there are clear limits that must be respected. The line is definitely hazy. Let me know in the comments your thoughts about gene editing!

But for now, let’s enjoy this scientific win and hope that ALS can be officially cured. Good job ice bucket challenge for bringing attention to a serious issue that may now actually be cured.

Original Article: https://www.sciencedaily.com/releases/2018/03/180305111517.htm

A New Addition to Gene Altering Technology

Today, there is new technology that allows genes to be edited. This is called CRISPR. CRISPR can fix genetic defects that lead to disease, improve food nutrition, and even resurrect extinct species. A research team in Japan created a new technology in addition to CRISPR that can change a single DNA base in the human genome. This is called Microhomology-Assisted eXcision or MhAX. The team called this new technique “absolute precision” in their article published in the Nature Communications journal.

MhAX originated when a group of researched wanted to have a better understanding on single nucleotide polymorphisms (SNP), which are single DNA mutations that can contribute to hereditary disease. In order to discover that these SNPS cause disease, researchers need to compare two genetically matched “twin cells.” However, twin cells are difficult to make because twin cells are not completely identical-they have a single different SNP. MhAX gives a new way to make twin cells.

The research teams used an extensive process to make the edits. First, the SNP modification and fluorescent reporter gene is inputed into the cell. This allows for researchers to see which cells are changed. The researchers then created another same DNA sequence, called microhomology, that was stationed on each side of the fluorescent gene. This allowed for sites where CRISPR can enter and trim the DNA. In order to leave only the SNP in, the research team used microhomology-mediated end system (MMEJ), a repair system that can remove the fluorescent gene. This technique, according to the team of researches, is precise and they are hopeful that it will be used to gain a better understanding of disease mechanisms which could potentially lead to gene therapies.

MhAX is very interesting because it is an additional technique to CRISPR that can help alter genes. It is very fascinating to read about the future of genetics and the new technology being created that can changes genes connected to diseases and improve the lives of people. For more information on MhAX, click here and here. Based on this research, how do you think this technology will be used in the future?

 

 

 

Transporting Organs from Pigs to People!

The shortage of human organs for transplants is one of the biggest problems facing the medical field, about 22 people die on waitlists for organs die every day in the United States. But there is a newfound hope! A recent discovery using CRISPR-cas9 gene editing may address this challenge.

Scientists have been dreaming about transplanting organs from pigs into people for years, a process called xenotransplantation, but they have been held back by threatening viruses in the pigs DNA called PERVs. PERVs are present throughout the pig genome and would infect a person who receives a pigs heart, lung, kidney, etc. This infection could be fatal and may cause a human epidemic. Scary right? However, scientists at well-known laboratories had a breakthrough this past summer using CRISPR-cas9 and created healthy pigs with no traces of PERV genes!

It was, in fact, the two early developers of that gene-editing technology, Harvard University’s George Church, and Luhan Yang, who first believed CRISPR’s guide RNA and a DNA-slicing enzyme could make precise, genome-wide changes to pig cells. Their results showed that CRISPR could “knock out” PERV genes at all 62 sites in the pig genome. However, there were some flaws in their experiments, they used a line of “immortal” pig kidney cells, which were chosen for their ability to survive in the dish. Earlier the team had tried to use genetically “normal” pig cells, but once the cells were edited they failed to grow normally. Yang says, “CRISPR’s hacking job of the DNA may have prompted them to stop dividing or self-destruct.” But when they exposed the cells to a “chemical cocktail” making them “immortal,” the growth of PERV free cells in the dish rose to 100%.  The next step was to actually produce piglets. The researchers inserted DNA containing the nuclei of the edited cells into the eggs taken from the ovaries of pigs in a slaughterhouse. They allowed each egg to develop into an embryo and implanted it in the uterus of a surrogate mother. Boom, healthy, PERV-free piglets!

https://commons.wikimedia.org/wiki/File:Cute_Piglet.jpg

After this huge finding, Church and Yang co-founded a company called eGenesis which focuses on the engineering of transplant organs and projects in laboratories around the world exploded. Currently, a transplant surgeon at the University of Maryland is gearing up to swap a pig heart into the chest of a baboon! However, obstacles still remain in regard to humans; the rejection of the organs once in humans, the physiological incompatibility, how to insert genes that will prevent toxic interactions with human blood, and (what I believe is most important) the ethical question.

 

 

 

 

What is that? Oh, it is the first ever hybrid bird species from the Amazon!!

According to the Science Daily article, A team of researchers from Scarborough revealed ,through a series of tests, a golden crowned manikin. This bird was first discovered in Brazil in 1957 ,but not seen until 2002.

“While hybrid plant species are very common, hybrid species among vertebrates are exceedingly rare,” says Associate Professor Jason Weir, senior author of the research.

A hybrid species forms when two parental species mate to produce a hybrid population, which then causes the birds to stop being able to freely interbreed with the parental species

The teams gathered genetic and feather samples over two trips to Brazil. They sequenced a large portion of the golden-crowned manakin’s genome including 16,000 different genetic markers. This led to the finding that 20 percent of its genome came from the snowy-crowned, and about 80 per cent came from the opal-crowned. In addition to that, the researchers used coalescent modelling to figure out at what point the golden-crowned split off from its parental species.

“The golden-crowned manakin ended up with an intermediate keratin structure that does a poor job of making either the brilliant white or the reflective iridescence of the parental species,” says Weir.

In its early existence, The golden-crowned manakin likely had duller white or grey feathers due to its keratin structure ,but eventually grew into yellow feathers to attract females. This led to unique color of the species.

“Without geographic isolation, it’s very likely this would never have happened because you don’t see the hybrids evolving as separate species in other areas where both parental species meet.”

 

 

 

Changing a baby’s DNA profile by physical contact?

Photograph by Vera Kratochvil, License: CC0 Public Domain

Recent research from the University of British Columbia and BC Children’s Hospital Research Institute proved that the amount of physical contact between infants and their caregivers can affect children at the molecular level. The study demonstrated that children who had been more distressed as infants and received less physical contact had an underdeveloped molecular profile for their age. This is the first study to show that the simple act of physical touching on human children can result in deeply-rooted changes in genetic expression.

The researchers measured a biochemical modification called DNA methylation in which parts of the chromosome are tagged with small molecules made of carbon and hydrogen. These molecules act as “dimmer switches” that help control how active each gene is and affect how cells function. The extent of methylation and where on the DNA it takes place can be impacted by external conditions, especially in childhood.

The team analyzed DNA methylation of 94 healthy children with records of received caregiving from the age of five weeks to four and a half years. The DNA methylation patterns the scientists gathered presented consistent differences between high-contact and low-contact children at five specific DNA sites. Two of the five sites are related to genes: one involves in the immune system, and the other in metabolism. The children who experienced higher distress and received little contact had a lower “epigenetic age” than what’s expected from their age. Such low epigenetic age is conceived as an underdevelopment of the child’s molecular profile. As medical genetics professor Michael Kobor said, “In children, we think slower epigenetic aging might indicate an inability to thrive.”

The researchers intend to further examine whether the “biological immaturity” – epigenetic changes resulted from low physical contact – carries broader implications for children’s health, especially their psychological development. According to the lead author Sarah Moore, “If further research confirms this initial finding, it will underscore the importance of providing physical contact, especially for distressed infants.”

Build A Baby?!

Have you ever wanted a baby to be a super fast swimmer like Michael Phelps? How about a child who has more talent than Mozart? Well, that can’t happen.

According to the  New York Times Article, Scientists in Oregon have successfully modified the DNA of human embryos. This led to the new hope that designer babies are in our near future. But, designer babies are more likely to be seen in movies than in reality.

The main reason why designer babies are unlikely is because great vocals and amazing coordination does not come from a single gene mutation, or even from an easily identifiable number of genes.

Hank Greely, director of the Center for Law and the Biosciences at Stanford, said,“Right now, we know nothing about genetic enhancement,”. “We’re never going to be able to say, honestly, ‘This embryo looks like a 1550 on the two-part SAT.’”File:Baby Face.JPG

Physical traits, like height or arm length, will also be difficult to genetically manipulate. Some scientists estimate height is influenced by as many as 93,000 genetic variations. A recent study identified 697 of them.

Talents and traits aren’t the only thing that are genetically complex. So are most physical diseases and psychiatric disorders. The genetic message is not a picture book ,but it actually resembles a shelf full of books with chapters, subsections and footnotes.So talents, traits and most medical conditions are out of the equation.

But about 10,000 medical conditions are linked to specific mutations, including Huntington’s disease, cancers caused by BRCA genes, Tay-Sachs disease, cystic fibrosis, sickle cell anemia, and some cases of early-onset Alzheimer’s. Repairing the responsible mutations in theory could eradicate these diseases from the so-called germline, the genetic material passed from one generation to the next. No future family members would inherit them.

Although this is challenging, it is proven to be more possible for scientists to alter the genes that lead to genetic diseases.

Last but not least, it is illegal.
There are debates regarding ethics and “playing God”. “I’m totally against,” said Dr. Belmonte. “The possibility of moving forward not to create or prevent disease but rather to perform gene enhancement in humans.”

Other people are scared of a super children takeover.

“Allowing any form of human germline modification leaves the way open for all kinds — especially when fertility clinics start offering ‘genetic upgrades’ to those able to afford them,” Marcy Darnovsky, executive director of the Center for Genetics and Society, said in a statement. “ We could all too easily find ourselves in a world where some people’s children are considered biologically superior to the rest of us.”

In summary, genetic modification for babies will only be used in dire cases. Therefore, the only way I can have a red head child who can play the piano and the flute simultaneously with their feet is through Sims 4.

Not to worry… you’re someones (blood) type!

 

BLOOD

Blood types were first discovered in 1901 by Austrian immunologist, Karl Landsteiner. The classification of human blood is based on the inherited properties of red blood cells as determined by the presence or absence of the antigens A and B, which are carried on the surface of the red cells. So what is the difference between types A,B,AB and O blood?

This picture demonstrates the possibilities of different blood types and their characteristics.

 

Blood Type is Hereditary 

Hereditary is defined as genetic factors that are able to be passed on from parents to their offspring or descendants. If someone has blood type A, they must have at least one copy of the A allele, but they could have two copies. Someone who is type B must have at least one copy of the B allele.  Alleles are one or two or more alternative forms of a gene that arise by mutation and are found at the same place on a chromosome.

Blood types are either positive or negative.  It is important to note that blood cells do not have a charge, the + or – is used to determind specific traits of the cell. For example, the + or – is determined on wether or not the blood cell has the antigen “Rh factor”. If there is a + attached to your blood type, the antigen is present; if there is a – next to your blood type, the antigen is not present.

So What?

Dealing with blood types is very interesting because, according to “Scientific American”, blood type may affect brain function as we age, concluded from a new large, long-term study. However those with AB show a 10% increase of having cognitive problems. From that same study, it was determined that…

In addition to blood types affecting health, blood types also contribute to a persons personality.  According to James and Peter D’Adamo’s work, type A tends to be cooperative, sensitive, clever, passionate and smart where type B people tend to be balanced, thoughtful and ambitious.

Blood type’s current impact on society is very crucial because it gives insight to future diseases, the ability to donate blood to those who need it, and for new born babies be a backbone for their personality.

Comment your blood type below!

 

How A Chemical From the Cypress Tree Could Advance Epigenetics Against Cancer

by Czechmate on Wikimedia Commons

Found in the essential oil extracted from the bark of a cypress tree, a chemical named hinokitiol shows potential to impact epigenetic tags on DNA and stop the activity of genes that assist the growth of tumors.

In order to develop an of understanding cancer, researches have had to comprehend the DNA methylation, an epigenetic function which controls gene expression. In regular DNA methylation, genes that work to fight against tumors are turned on, reducing the risk of cancer. However, if DNA methylation is negatively altered, then those cancer-fighting genes will be silenced, helping to progress cancer development. Scientists have tried to combat irregular DNA methylation and over-silencing of genes by creating epigenetic anti-cancer medications that reverse non-beneficial methylation effects. Like in most cases of medication usage, the users face unappealing side effects. Hinokitiol is attractive to scientists because it is a natural compound with many health benefits and way less side effects than modified drugs that can possibly cause mutagenesis and cytotoxicity.

 

Researchers from the Korea University College of Medicine tested the productivity of the hinokitiol chemical in a study by giving doses of it to colon cancer cells. It was found that this chemical helped to inhibit the colon cancer cells efficiency without affecting the colon cells without cancer. The scientists also found through careful inspection that the presence of hinokitiol decreases the expression of proteins DNMT1 and UHRF1; both of which are proteins that encourage carcinogenesis. In summary, the doses of hinokitiol appear to have allowed normal cells to remain healthy, while reducing the ability for the colon cancer cells to thrive and ceasing the production of proteins that promote cancer maturation.

Researchers are continuing their search for natural compounds, as opposed to artificial medications, that can prevent the flourishing of cancer in our bodies through playing a positive role in gene expression and DNA methylation.

http://www.whatisepigenetics.com/cypress-trees-epigenetically-protect-cancer/

 

 

https://commons.wikimedia.org/wiki/File:Raindrops_on_leyland_cypress.jpg

The Miracle of CRISPR/Cas9 in Gene Editing

Some scientists say, “you can do anything with CRISPR” and others are absolutely astonished and amazed.

CRISPR can rapidly change any gene in any animal or plant with ease. It can fix genetic diseases, fight viruses, sterilize mosquitos and prepare organs for transplant. The possibilities are endless – and the prospect of designer babies isn’t far off.

https://en.wikipedia.org/wiki/CRISPR#/media/File:Crispr.png

Dead Cas9 can fix a single base pair typo in DNA’s genetic instructions. It can convert a C-G into a T-A pair. Also, we can attach fluorescent tags to dead Cas9 so researchers can locate and observe DNA or RNA in a living cell. Dead Cas9 can also block RNA Polymerase from turning on a gene, in CRISPRi. In CRISPRa, a protein that turns on genes is fused to dead Cas9.

CRISPR can be used for anything involving cutting DNA. It guides molecular scissors (Cas9 enzyme) to a target section of DNA & works to disable or repair a gene, or insert something new.

Many scientists have been thinking of improvements for this miracle gene editor. RNA Biologist Gene Yeo compares the original Cas9 to a Swiss army knife with only one application – a knife. He says that by bolting other proteins and chemicals to the blade, they transformed the knife into a multifunctional tools.

CRISPR/Cas9 is special because of its precision. It is much easier to manipulate and use compared to other enzymes that cut DNA. By using “guide RNA” it can home in on any place selected by the researcher by chemically pairing with DNA bases.

While Cas9 does have some problems, scientists definitely see the potential for greatness with a few tweaks. They wanted to ensure permanent single base pair changes, and they increased that from 15 to 75 percent. Liu used a hitchhiking enzyme called cytidine deaminase.

Scientists researched chemical tags on DNA called epigenetic marks. When scientists placed the epigenetic marks on some genes, activity shot up. This provided evidence that the mark boosts gene activity.

Case can also revolutionize RNA biology. The homing ability of CRISPR/Cas9 is what makes this seem possible. It was found that Cas9 could latch on to mRNA.

CRISPR/Cas9 was first found in bacteria as a basic immune system for fighting viruses. It zeroes in on and shreds the viral DNA. Half of bacteria have CRISPR immune systems, using enzymes beyond Cas9.

Overall scientists predict that in the next few years, results will be amazing. The many ways of using CRISPR will continue to multiply and we will see where science takes us.

Source: https://www.sciencenews.org/article/crispr-inspires-new-tricks-edit-genes

Other Sources: https://www.neb.com/tools-and-resources/feature-articles/crispr-cas9-and-targeted-genome-editing-a-new-era-in-molecular-biology

8 Genes That May Be Affecting Your Sleep Patterns

Have you ever wondered why you struggle to fall asleep at night, while your sibling has no issues sleeping soundly for eight hours? What causes your sleep patterns? While your sleep may occasionally be affected by a particularly stressful event, leading to irregular sleep patterns, for

While your sleep may occasionally be affected by a particularly stressful event, leading to irregular sleep patterns, for many, it is simply caused by the way their brains and bodies work. New research has identified for the first time eight specific genes that are linked to insomnia or excessive daytime sleepiness. The data also revealed that some of the genes associated with disturbed sleep identified in this study seemed to be linked to certain metabolic and neuropsychiatric diseases too, like restless leg syndrome, schizophrenia, and obesity.

Richa Saxena, one of the co-authors and assistant professor of  anaesthesia at the Massachusetts General Hospital and Harvard medical school, explained why this research was so important: while “it was previously known that sleep disturbances may co-occur with many diseases in humans, but it was not known that there are shared genetic components that contribute both to sleep problems and these conditions.” Furthermore, while studies have previously identified genes linked to some sleep disorders, this is the first study that has specifically linked genes to insomnia.

Link to Original Image

The study looked at the prevalence of insomnia, sleep problems and excessive daytime sleepiness in 112,586 European adults who had participated in a UK Biobank study. All participants had their genes mapped, as well as additional information like weight and diseases/chronic conditions. The results revealed fascinating linkages between certain genes. For example, the genes linked to insomnia were most strongly related to those associated with restless legs syndrome, insulin resistance, and depression, while the genes associated with excessive daytime sleepiness were also linked to obesity. Saxena remarked again that “it was not known until this study that there are shared genetic components- shared underlying biological pathways- that contribute to both sleep problems and these shared conditions.”

Of course, this study is not 100% conclusive- people who have trouble sleeping are not necessarily at higher risk for restless legs syndrome, schizophrenia, and obesity. In reality, it is likely that many different genes contribute to both sleep problems and these medical problems, Saxena said. But this new study does suggest that these problems share genes and underlying pathways.

So what does this research do for the average person? Well, not much. Right now, it’s just fascinating news that there may be a genetic reason people with these disorders are more likely to have troubled sleep. However, there is hope that in the future researchers will be able to design and test various drugs to target these genes. This would bring immense benefits to people who struggle to keep normal sleep patterns, as well as helping individuals proactively avoid diseases they may be more at risk for (for example, obesity).

 

Transgender- Science Behind Sexual Identity

Stop Homophobia - NUS Sports Gay Protests, London

Darren Johnson Image Link

Transgender concepts have been a prevalent issue. It has been seen on a celebrity level with Caitlyn Jenner but on smaller levels as well. Schools are struggling to make decisions of whether to make bathrooms same-sex or unisex. While administrative figures are struggling to make accommodations for the increasing number and popularity of LBGT rights, society is also struggling to determine whether trans-gender identity is a social or biological doing.

One recent finding has shown that anatomical sex- gender identity and orientation- is determined in the womb. However, once the anatomy is settled, there is about a six month lag before the brain masculinizes or feminizes. Research has concluded that through some combination of genetics, hormones and the uterine environment, sometime between six months and delivery the sexual orientation is set in the brain. The only question that rises is what happens when the brain does not match the genitals.

Genetics has been proved to play a role in transgender identity. Researches studied a group of twins where either one or both were transgender.  In identical twins, 39% were both transgender. Of the fraternal twins, there were zero pairs where both were transgender. In fact a study in the Journal Biological Psychiatry, researchers found a gene variant that was associated with being a trans woman.

For the 61% of identical twins where only one is transgender, the prenatal environment, or womb, had a key role. While identical twins share genetic codes, the genes that get expressed or remain unexpressed differ. Identical twins have separate umbilical cords , separate amniotic sacs, and develop in separate locations of the womb. All these things can have an affect in the mixing of chemicals and the sexual identity process.

Lastly, the structure of the brain also plays a role. A 2014 study from the Journal of Neuroscience found that “differences in the brain’s white matter tracts [fall] along a perfect spectrum of gender identity with cisgender men and women at the ends and trans men and women in the middle.”

 

CRISPR/Cas9 Provides Promising Treatment for Duchenne Muscular Dystrophy

There are nine kinds of muscular dystrophy and of these, Duchenne MD is the most common severe form of childhood MD. It affects about 1 in 5000 newborn males, only in very rare cases has it affected females. DMD is a genetic disorder that causes progressive muscle degeneration and weakness. Patients usually die by age 30 to 40.

DMD is caused by the absence of a protein, dystrophin, that helps keep muscle cells intact. In 1986 it was discovered that there was a gene on the X chromosome that, when mutated, lead to DMD. Later, researchers discovered that the protein associated with this gene was dystrophin. From this information, we can tell that this disorder is sex-linked, which explains why women are mainly carriers.

No one has found an absolute cure for this genetic disorder until now. Even in recent years, people have discovered treatments that will make patients’ lives more bearable, but never reverse the disorder. As a result of these advances, mostly in cardiac and respiratory care, patients are able to live past teen year and as long as in to their fifties, though this is rare. Although there are still drugs being tested like Vamorolone (a “dissociative steroid,” is an anti-inflammatory compound), more treatments on the molecular level are now being considered. However, thanks to recent discoveries and research with the new genetic technology, CRISPR/ Cas9, scientists may have found a treatment for DMD.

This new approach to gene correction by genome editing has shown promise in studies recently. This particular correction can be achieved in a couple ways: one is by skipping exon 51 of the DMD gene using eterplirsen (a morpholino-based oligonucleotide). Studies over four years show prolonged movement abilities, and a change in the rate of decline compared to controls. The newest approach to gene correction using CRISPR/Cas9, which the article I’m writing about focuses on, was performed in this study as next described: the CRISPR/Cas9 system targets the point mutation in exon 23 of the mdx mouse that creates a premature stop codon and serves as a representative model of DMD. Multiple studies in three separate laboratories have provided a path and laid the groundwork for clinical translation addressing many of the critical questions that have been raised regarding this system. The labs also discovered by further demonstrations, that this is a feasible treatment for humans. Functional recovery was demonstrated in the mice, including grip strength, and improved force generation- all of which are very important and hopeful discoveries. It is estimated from these studies that this new method will pass clinical trials and go on to benefit as many as 80% of DMD sufferers. Even greater success rates are expected if this is performed in young and newborn DMD patients.

The Relationship Between Girls and Their “Skinny Jeans”

New findings suggest that the dynamic between a girl’s gene and her early socio-economic environment can dictate if they have a larger fat intake or healthier consumption in relation to others within the same class background. The gene variant is called the DRD4 repeat 7 (7 repeats). According to the McGill Centre for the Convergence of Health and Economics, girls from poorer families with DRD4 repeat 7 have an increased fat intake than other girls from the same socio-economic environment. However, girls with the gene variant from wealthier families and backgrounds have a lower fat intake. These studies portray how it isn’t solely the gene that determines an individual but how the gene influences an individuals sensitivity to environmental factors that contribute to a child’s preference to fat.

This research was done by collecting diaries by parents of 200 Canadian children (about 4 years old). Their fat, protein, and carbohydrate percentages were all measured along with their BMI and also saliva tests to see who are carries of the DRD4 repeat 7 gene. To categorize the children in their socio-economic environment, the family income was used while acknowledging the food environment (what type of foods are available in that neighborhood).

Plasticity genes,” where carriers of gene variants might be more “open” to their environment rather than those who are not carries of gene variants, is a term used to describe the DRD4 repeat 7 gene. Researchers realized that the fat intake has a direct correlation with any modification of the girls social environment and how they are raised. Therefore, the gene itself is not to blame for a high fat intake.

The data had only shown to be consistent with girls, not boys. From an evolutionary perspective, in order to sustain hard conditions and be able to reproduce, girls had to have more weight on them. Another reason may be because the age four is not old enough to measure the gene’s activity in boys because boys can gain weight at different stages than girls.

Furthermore, this research contributes to the idea that preventing childhood obesity cannot have a general and “one size fits all” type of approach. Instead, specific approaches for certain populations is what’s needed. Especially populations that are vulnerable in adverse conditions because they are more likely to respond better if their conditions improve.

 

Original article can be found here.

Serious Monkey Business Going on with these Tanzanian Monkeys

https://commons.wikimedia.org/wiki/File:Udzungwa_Red_Colobus_Stevage.JPG

https://commons.wikimedia.org/wiki/File:Udzungwa_Red_Colobus_Stevage.JPG

A team from the University of Oregon comprised of Maria Jose Ruiz-Lopez, a postdoctoral researcher, and Nelson Ting, a corresponding author and professor of anthropology, have discovered why a specific species of endangered monkeys in Tanzania are living in various different geographical areas that are increasingly becoming isolated from one another. It has been concluded that this situation is due to the monkey’s closeness to villages and the intentional forest fires by humans in an effort to create space for crops. Lopez collected 170 fecal samples of the Udzungwa red colobus monkey, a specific monkey used as indicator species in ecological change, for DNA analysis over five distinct forests in the Eastern Afromontane Hotspot. To approach this experiment, the team used landscape-genetics, a method that merges landscape ecology and population genetics. Though odd to use in tropical settings, this technique allowed them to investigate the dissimilarities between 121 monkeys and how human activity influences ecological changes. The largest difference between monkeys were of those who were separated by villages and/or zones that had a history of the highest density fires. The researches studied multiple variables at once and the monkey’s proximity to villages and man-made fires was still the most significant. Because these fires are stopping the monkeys from migrating, smaller groups of them are becoming more isolated, resulting in a decrease of genetic diversity and yielding to extinction variables.

This experiment regarding behavioral ecology, a way in which organisms react to abiotic factors in their environment, made me contemplate the human’s role in the environment and how we are strongly affecting the possible extinction or conservation of animals. This particular ecosystem is rich in diversity and it would be a tragedy for it to fall to extinction! There is no direct solution to this problem; after all, to have the power to alter a human’s ecological footprint and their decision whether to burn a forest or not is quite hard to seize control of. Do you believe with enough awareness and education, local communities would be able to create a local solution to save the diverse genes of these monkeys?

Original article can be found here.

Bullying and its Epigenetic Effect

Unfortunately, bullying is commonplace in most schools in America.  Most people are aware of the mental and psychological harm that bullying can cause, but not until very recently have they been aware of the lasting physical changes it can cause.  With the discovery of epigenetics, or the study of genetic traits or expressions that are not caused by DNA, but rather by the methylation or concealing of genes, a new door into the effects of bullying was opened. A group of researches from the UK and Canada performed a study on identical twins.  At age 5, the twins had not been exposed to bullies and expressed almost all of the same traits, physically and emotionally.  The researchers then waited until the twins were 12, imageand revisited only the twins that had different experiences with bullying (one twin was bullied when the other was not).  The researches found big disparities in the twins epigenome, or the way they express their genes.

 

The bullied twin’s protein that codes for a protein that helps move the neurotransmitter serotonin into neurons called SERT had significantly more DNA methylation in its promoter region.  This change is thought to dial down the amount of proteins that can be made from the SERT gene — meaning the more it’s methylated, the more it’s “turned off.”  Therefore, the bullied twin is unable to produce as much serotonin.  This effect is thought to persist through a person’s life.  The effects of bullying will persist an entire lifetime.

 

The researchers also tested how the twins responded to stressful situations differently.  The bullied twin had a much lower cortisol response than the twin that had not experienced bullying.  Cortisol is a hormone that helps people through stressful situations, like being bullied.  However, having too much cortisol is harmful to the body.  The bullied twin’s body turned off the gene that aids in cortisol production because they were being put in stressful situations so often by bullies that their body couldn’t tolerate the amount of cortisol they were producing.

 

This study is not only interesting from a scientific standpoint, but it is also very important in the movement against bullying.  These scientists proved that bullying not only does immense psychological harm, but it also effects people’s well being in a very real and lasting way.

 

 

 

Link to article: http://www.huffingtonpost.com/sharon-moalem/bullyings-terrible-legacy_b_5142857.html

 

Epigenetics and Brain Development

Pre-natal human brain development helps determine many major qualities a person may have in life. Research at the University of Exeter found that a type of Epigenetics, DNA methylation, helps us understand the differences between male and female brains. They studied that this type of gene regulation in pre-natal brain development may help us grasp more information about “sex differences in behavior, brain function, and disease.”

In the womb, as organs are developing, the brain has extreme plasticity. Professor Jonathan Mill of the University of Exeter explains how it is extremely vulnerable to changes because the brain is creating the structures that “control neurobiological function across life.” The research consisted of measuring genomic patterns of DNA methylation in the womb between 23 and 184 days after conception. DNA methylation is a chemical modification to one of the 4 nitrogen bases that helps create one’s unique genetic code. By studying the DNA methylation, or turning on of selected genes, in the pre-natal period when the brain is being developed, it helps scientists understand the susceptibility of different neurological diseases based on one’s sex. Helen Spiers from King’s College London explains how male and females have unique differences with certain disorders, such as Autism. She says how “autism affects five males to every female.”

The molecular switches that regulate genes were found to be gender specific. They also help differentiate brain cells from other cells in the body. This research gained traction in understanding the unique qualities of the DNA “blueprint” of males and females in their developing stages. The genetic switches that are turned on in pre-natal development for each gender are unique, and a deep topic of study. By doing so, in the future, scientists can research deeper into neurological diseases that are unique to males or females, and how they may be created in the womb.

 

Original Article: http://www.sciencedaily.com/releases/2015/02/150203190223.htm

Link to picture:

http://commons.wikimedia.org/wiki/File:Brain_01.jpg#mediaviewer/File:Brain_01.jpgBrain_01

Links Between Human and Mice Obesity

A new study of the genomes and epigenomes of mice and humans is beginning to link the two, especially in regards to obesity.

As Andrew Feinberg, MD states, “It’s well known that most common diseases like diabetes result from a combination of genetic and environmental risk factors. What we haven’t been able to do is figure out how, exactly, the two are connected,”. Therefore, Feinberg began to study epigenetic tags to further understand gene usage.

His project with his team was to study the epigenetics of identical mice that were fed either normal or high-calorie diets. He found that the difference between normal and obese mice was the presence of chemical tags, or methyl groups, that prevent the production of proteins. This is significant because as we have learned, these types of modifications of DNA can be copied and inherited, which is then passed on into the next generation. This revealed that the normal and obese mice did not have the same location sites of their tags, giving them that alteration in their DNA. This is often seen in the alterations of the Agouti gene in mice.

Pictured here is effect of epigenetics on the physical appearances of mice (Agouti gene)

This proves that epigenetic changes are related to the environment and food sources that are around us, creating patterns based on one’s diet (which can create risk if a high-calorie intake is continuous).They also found that epigenetic changes affect genes that are already both linked to diabetes as well as those who aren’t, allowing them to further conclude that genes plays more of a role in diabetes than we previously thought.

This allows hope for future to provide epigenetic tests, which can prevent diabetes in those who are on track to have it later in life.

Article  Source: http://www.sciencedaily.com/releases/2015/01/150106130510.htm

 

Does long-term endurance training impact muscle epigenetics?

800px-Nucleosome_1KX5_2

 

Epigenetics translates to “above” or “on top of” genetics. To be more specific, Epigenetics is the study of how modification of gene expression can cause changes in many organisms.

A new study from Karolinska Institutet in Sweden explores the theory that long-term endurance training alters the epigenetic pattern in the human skeletal muscle. The team that conducted the research also explored strong links between these altered epigenetic patterns and the activity in genes controlling improved metabolism and inflammation.

The study was conducted using 23 young and healthy men and women. The men and woman would perform one-legged cycling – where the untrained leg would be the control of the experiment. Four times a week and over the course of three months, the volunteers would participate in a 45 minute training session. Though skeletal muscle biopsies, supervisors would measure their markers for skeletal muscle metabolism, methylation status of 480,000 sites in the genome, and activity of over 20,000 genes.

At the end of the study, the researchers concluded that there was a strong relationship between epigenetic methylation and the change in activity of 4000 genes in total. Epigenetic methylation is defined as the “addition of a methyl group to a substrate or the substitution of an atom or group by a methyl group. ” Moreover, it was determined that methylation levels increased when involved in skeletal muscle adaptation and the metabolism of carbohydrates. However, methylation levels decreased in regions associated to inflammation.

Furthermore, Carl Johan Sundberg found that “endurance training in a coordinated fashion affects thousands of DNA methylation sites and genes associated to improvement in muscle function and health.” He believes that this determination could be vital to understanding the treatment of diabetes and cardiovascular disease as well as how to properly maintain good muscle function throughout life.

This article relates very much to our work in class as we learn the Molecular Genetics Unit. It connects because we are learning what happens when mutations occur in one’s genome and the impacts those mutations have on someone. For example, cancer is one of the most researched and explored topics in regard to how modification of gene expression alters organisms. Oncogenes and Tumor suppressor genes have vital impacts on cellular division, changes to cellular function, and the growth of tumors.

Page 1 of 2

Powered by WordPress & Theme by Anders Norén

Skip to toolbar