BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: epigenetic markers

Epigenetics Fight Against Pancreatic Cancer

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most deadly forms of of Pancreatic Cancer with a less than 10 percent, 5-year survival rate. Unfortunately, it is the most common form of Pancreatic Cancer.  However, scientist were given hope to increase the survival rate when a protein was identified as a aid to the development of PDAC. The protein is Arginine Methyltransferase 1 (PRMT1) and it is involved in gene transcription, DNA signaling, and DNA repair.

It is said that research done by Giulio Draetta, M.D., PhD “strongly suggest a role for PRMT1 in PDAC development and illuminate a path toward the development of therapies for patients in desperate need of innovative solutions”. Draetta’s  team developed a platform called PILOT, Patient-Based In Vivo Lethality to Optimize Treatment. The PILOT technology allows researchers to systematically identify epigenetic drivers in patient-derived tumors. The research found hat PRMT1 is a epigenetic driver for PDAC. Using CRISPR, the team was able to confirm that when the proteins were removed from DNA, the growth of the cancer cells were significantly impaired. There is hope that this recent development can save many lives and increase the survival rate of Pancreatic Ductal Andeocarcinoma.

https://commons.wikimedia.org/wiki/File:Diagram_showing_stage_T4_cancer_of_the_pancreas_CRUK_267.svg

 

Genetics and Mental Illness

Brain Lobes

Scientists have tirelessly searched through the genetic makeup of people with metal illnesses trying to find a common variation(s) that could account for conditions such as schizophrenia and bipolar disorder. However this has been inconclusive so researchers have turned to epigenetics, the study of how experience and environment effect the expression of certain genes. Epigenetic marks regulate when and how much protein is made with out actually altering the DNA itself. It is believed that these “marks” can affect behavior, and thus may interfere with metal health. This idea was tested in a study with rats.  Researchers proved that affectionate mothering alters the expression of genes, allowing them to dampen their physiological response to stress, which was then passed on to the next generation. This is thought to be similar in humans and these markers develop as an animal adapts to its environment.  Epigenetic research led scientists to prove that offspring of parents who experienced famine are at a higher risk for developing schizophrenia. Additionally, some people who have autism, epigenetic markers had silenced the gene which helps produce the hormone oxytocin which helps the brain’s social circuit. And therefore a brain that lacks this hormone would most likely struggle in social situations. Thomas Lehner of genomics research at the National Institute of Mental Health says that studies and research have shown that epigenetic modifications impact behavior and he also believes that these effects can be reversed. By studying genes at the “epi” level, researchers are hoping to find patterns that were hidden at the gene level.  Finding and targeting these patterns can lead to more effective treatment of and management of certain mental illnesses. There are many projects and studies at some of the most prestigious institutes, such as Tufts and Johns Hopkins, that are focused on the study of things at the epigenetic level.

Original Article

Further Information:

Epigenetic Markers and Heredity

Epigentetics and Autism 

Genetics and the Brain

 

 

 

 

Powered by WordPress & Theme by Anders Norén

Skip to toolbar