BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: Boston Children’s Hospital

Modifying Genes to Cure a Blood Disease?

Helen Bolando, a 16 year old living with sickle cell disease, recently became the youngest recipient of an experimental treatment at Boston Children’s Hospital. This treatment made her the youngest person to have her DNA manipulated in hopes of reversing sickle cell’s effects. 

What is sickle cell disease?

Sickle cell disease is a disorder caused by a gene mutation that causes the shape of blood cells to resemble that of a crescent. Characteristics of sickle disease include a low red blood cell count and frequent infections. Due to their shape, blood cells in individuals with sickle cell cells break down too early, causing a lack thereof. This lack of blood cells is known as sickle cell anemia and causes a multitude of symptoms ranging from fatigue and shortness of breath, to delayed growth in children. Painful episodes are also common due to the shape of the red blood cells. Their crescent shape causes blockages in blood vessels, depriving organs and tissues of oxygen, sometimes leading to organ failure. 

A new gene therapy?

Researchers at Boston Children’s Hospital have found that hemoglobin genes (genes found in the blood) are only active in the preceding red blood cells. These genes are only active for 4-5 days before red blood cells mature and when they’re active, they communicate with other cells through communication such as long distance signaling, as we’ve learned earlier in our bio class . The question for researchers is as follows: “How do you manipulate a gene, or put a gene in, so it is expressed only in those cells and at high levels?”  New treatments to solve this burning question include the extraction of immature blood cells from patient’s bone marrow. These stem cells are then genetically modified and re-infused in hopes of creating new, healthy blood cells. Even more interestingly, scientists have found that fetal blood cells have an absence of sickle cells and are testing ways to block the gene that stops fetal hemoglobin production and begins that of adult hemoglobin.Bluebird Bio, a biotech company in Cambridge, Mass conducted a study during which nine patients were treated with gene therapy. Results stated that four patients of the nine who were  treated at least six months earlier, produced enough hemoglobin to no longer have the symptoms of sickle-cell disease!

Researchers are making incredible strides in solving this painful disease using extremely creative and innovative techniques! Are there any other methods of solving sickle cell disease you can think of  based on what we’ve learned so far about cell communication? 

 

 

Cuts, Scrapes, and Hair Loss a Thing of the Past!

images

Can adults repair their tissues as easily as children can? A study currently conducted at Boston Children’s hospital is attempting to find the answer to this question. Researchers have found that by activating a gene called Lin28a, they were able to “regrow hair and repair cartilage, bone, skin and other soft tissues in a mouse model.”  The scientists found that Lin28a works by enhancing metabolism in mitochondria—which, as we learned in class, are the “powerhouses” of the cells. This in turn helps generate the energy needed to stimulate and grow new tissues.
This discovery is a very exciting one for the field of medicine. The study’s senior investigator George Daley said, “[Previous] efforts to improve wound healing and tissue repair have mostly failed, but altering metabolism provides a new strategy which we hope will prove successful.” Scientists were even able to bypass Lin28a and directly activate the mitochondrial metabolism with a small compound and still enhance healing. Researcher Shyh-Chang says of this, “Since Lin28 itself is difficult to introduce into cells, the fact that we were able to activate mitochondrial metabolism pharmacologically gives us hope.” Since it is difficult for scientist to actually introduce Lin28a into a cell, it might be easier to simply synthetically create a substitute and introduce that. Either way, I think this is a very promising discovery! What other uses can you think of for this discovery?

 

Source:

http://www.sciencedaily.com/releases/2013/11/131107123144.htm

Powered by WordPress & Theme by Anders Norén

Skip to toolbar