BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: biodiversity

Super-Spreader Plants: The #2 Cause of Biodiversity Loss Worldwide

According to the results of a global research project, conducted by the University of Konstanz and posted in December 2021, “super-invader” plants are a huge problem and greatly reduce biodiversity.

What even is biodiversity? What do the results mean? How does this even happen? Here’s what you need to know about these invasive plants that spread like wildfire.
Large-leaved Lupine (Lupinus polyphyllus). Invasive | Free Photo - rawpixelLarge-leaved Lupine (Lupinus polyphyllus). Invasive species in the wild of Ukraine.

What exactly are ‘invasive’ plants?

Coming from all around the world, invasive plant species cause harm to the environment, the economy, and/or to human health through rapid overpopulation. Most invasive plants come from other continents and countries, but few are native to other regions of the United States.

The extremely harmful side effects of invasive plants

  • a reduction in native biodiversity which adds to climate change, pollution, and more (I encourage you to self-educate on the importance of biodiversity here)
  • alteration of disturbance regimes
  • habitat degradation and loss (the loss of native fish, wildlife and tree species)
  • loss of habitat for dependent and native species (including wildlife)
  • changes in biogeochemical cycling
  • the loss of recreational opportunities and income
  • crop damage and diseases in humans and livestock
Free photo Asian Berry Red Honeysuckle Bush Invasive Plants - Max PixelJapanese honeysuckle

What makes these plants invasive?

Here are some characteristics of invasive plants, through both their properties and how they are distributed over large distances.

  • Can produce large quantities of seed
    • For example, each garlic mustard plant produces hundreds of thousands of seeds–which is a great abundance
  • Seeds are often distributed by birds, wind, or humans which allows them to travel significant distances
  • Many produce chemicals that make it difficult for other plants to grow nearby (ex: garlic mustard plant)
  • Some plants arrive accidentally in air or water cargo
  • Tourism: travelers from one country to another actually commonly spreads things such as insect pests or weed seeds across
  • Produce seeds and leaves that germinate and ‘leaf out’ way early in the spring. As an example, the Norway maple‘s seeds can be 6 inches tall before the plant sprouts, and buckthorns keep their leaves into November, long after native plants have lost theirs.
    • This results in the plant’s leaves being kept late into fall, allowing them to photosynthesize earlier and later than native plants

Looking deeper into this on a molecular level…

File:Photosynthesis.gifphotosynthesis drawing

Looking at the basic science of plants is helpful to understand why this earlier photosynthesis is so important. Plants use sunlight, water, and carbon dioxide to create sugars and oxygen in energy form in the process called photosynthesis. Plants contain chloroplasts that perform this process, which is comprised of light-dependent reactions and the Calvin Cycle (light-independent reactions).

The goal of the light-dependent reactions of photosynthesis is to collect energy from the sun and break down water molecules to produce energy-storing molecules ATP and NADPH. These are then used in the Calvin Cycle to turn carbon dioxide from the air into sugar, providing food for plants.

File:Simple photosynthesis overview.svg - Wikimedia Commons simple photosynthesis diagram

Plants with high photosynthetic rates will grow and reproduce earlier than their native counterparts, often out-competing them and leaving little space for them to thrive. They then can spread really fast due to their other properties listed above.

Why should we care?

Following habitat destruction, invasive species are the second leading cause of biodiversity loss around the world, contributing to climate change and pollution. Forty-two percent of threatened and endangered plants and animals in the United States are directly harmed by the presence of invasive organisms. That’s basically half! Governments around the globe spend billions of dollars each year to control the harm caused by these plants. Yikes.

What can we do?

Here’s what you can do to prevent the super-spread of invasive plants:

  • Learn how to identify these plants and educate your friends about them.
  • Don’t pick, gather, or bring home wildflowers that you can’t identify.
  • Check for weeds and seeds from shoes and clothing after a hike. Also, check your pet’s fur for them! Remove anything that you find before arriving home.
  • Try to keep your car off of weed-infested roads and trails.
  • Be on the lookout for seeds while camping and coming back from vacation!
  • Try to join a plant-removal project! Shown below is the happy result of an invasive species removal project completed by The Southeastern States District Office.

Dr. Mark van Kleunen, Professor of Ecology in the Department of Biology at the University of Konstanz and senior author of the research project’s publication, brings up the most important point: “Unless more effective protective measures are taken to counter the ongoing spread and naturalization of alien plants in the future, they will continue to destroy the uniqueness of our ecosystems — making the world a less diverse place.”

Researchers Vacuum Animals DNA Out Of The Air

Elizabeth Claire, a U.K. professor led the study of focusing on the ecological challenge by developing methods such as using filters attached to vacuum pumps to measure biodiversity and analyze the effects of environmental change on species interaction. Finding out where endangered species live is part of protecting them. Researchers claim to have discovered a powerful new method for draining DNA from the air. Scientists have discovered that the air we breathe contains detectable traces of animals that may live nearby, and this discovery has the potential to change the way researchers monitor and track populations of susceptible or endangered species. Filtering animal environmental DNA (eDNA) has the potential to provide a far more advanced method of studying and monitoring biodiversity. 

Eurasian hedgehogs introduced to the island of Coll by Alick Simmons

Research indicates that DNA in environmental necessities like water, soil, or air has the potential to determine the biodiversity of organisms present and is necessary for eDNA filtering. Elizabeth has collected samples testing the theory of vacuuming the eDNA from surrounding animals at the Hamerton Zoo Park in the U.K. where “sequencing ultimately identified DNA from 25 different species.” Most interestingly, the researchers discovered some zoo animals outside of their enclosures at a distance of nearly 300 meters. One of them is the endangered Erinaceus europaeus. This leads to the question, How far can animal eDNA travel in the air?

Applications of environmental DNA metabarcoding in aquatic and terrestrial ecosystems

In addition, the use of vacuuming DNA from the air allows the researchers to distinguish the characteristics of the animals. This article is relevant to our class because it discusses the relationship between DNA and the cell structure of an animal, which the vacuum pump discovers in its environment. As illustrated by the image above, in environmental studies, DNA metabarcoding is the ideal method for examining genes of various backgrounds such as those animals identified outside of their enclosures. 

This new method will allow many more endangered animals to be provided with a stable environment, while also allowing scientists to learn more about this opportunity in the hopes of using it for environmental protection.

Meaningful Momentum or Mirage? The True Effect of The Covid-19 Pandemic on Our Environment – and How We Must Move Forward

During a time where everyone is forced to self-isolate inside, it may not feel very natural to think about the environment in which we live. However, the Covid-19 pandemic has certainly affected the great outdoors for the better and (if reports are to be believed) the worse.

At first glance, it would be entirely logical to conclude that a decrease in travel and industrial production would lead to a significant boost in the health of the environment. According to the NIH, “the global disruption caused by […] COVID-19 has brought about several effects on the environment and climate. Due to movement restriction and a significant slowdown of social and economic activities, air quality has improved in many cities with a reduction in water pollution in different parts of the world,” therefore allowing many governments to gain more momentum in their strides against climate change.

However, this positive sentiment is not shared by many high-ranking officials of NASA, who believe that the pandemic has put a pause on necessary procedures that served to improve our environment. As a result of social distancing and quarantine mandates, there “are far fewer intentional fires to boost biodiversity [the level of variety of life on Earth] and reduce fuel loads in the Southeast.” The lack of these fires is suspected to have impacted the region’s biodiversity by both eliminating habitats for eukaryotic organisms (organisms with nuclei) who thrive in fiery environments and polluting prokaryotic organisms (organisms without nuclei) with fuel (according to Ben Poulter, a research scientist at NASA’s Goddard Space Flight Center). Moreover, the positive effects of the pandemic on the environment may not even be sustainable. Per National Geographic, “daily global carbon emissions were down by 17 percent compared to last year [before the pandemic]. But as of June 11, new data show that they are only about 5 percent lower than at the same point in 2019, even though normal activity has not yet fully restarted.” This spike in carbon emissions could be due to both the government “favors” (such as tax breaks, regulatory rollbacks, and cash loans) offered to high-polluting industries in order to help them stay afloat during the pandemic and the fact that the lax quarantine restrictions in place have not been very effective in keeping people off of the road and in their homes. When these two developments are taken into account, the state of our world during the pandemic looks rather grim.

The theory that the so-called “improvement” in our environment’s health may be very short lived is also supported by data concerning former Covid-19 patients. A new study discussed by Healthline reveals that “people who recover from even mild cases of COVID-19 produce antibodies that are believed to protect against infection for at least 5 to 7 months, and could last much longer” (For context, antibodies are blood proteins produced by Plasma B Cells that combat viruses that invade the body. The production of antibodies is part of the body’s Humoral Immune response.). While this is great news for healthcare workers who must deal with the disease firsthand, it has dangerous implications for former Covid-19 patients who may use their newfound “immunity” to resume life as normal, which could undo the minimal environmental progress that our country has made.

Despite this backslide, it is still possible to ameliorate the damage done to the environment after the pandemic ends. The chief editors of Scientific American argue that while the pandemic has “barely made a dent in climate change,” our environmental plight has shown us a way forward: using our newfound free time to fight for justice and equality for marginalized groups that are disproportionately affected by the pandemic. “The pandemic has not only aggravated the stark inequities and injustices [against minorities], [but] the mass unemployment it has generated has also given millions of Americans the motivation and opportunity to express their outrage. Their impassioned protests against systemic racism may be essential to moving the U.S. to a more equitable and sustainable future. Change is in the air.” While it may appear unorthodox to equate climate change activism with social justice advocacy, it’s entirely possible that they’re one and the same, as evidenced by the social and environmental reforms proposed by the Green New Deal. Consolidating these two fights against the exploitations of nature and humans may prove to be a viable path forward in the coming months.

Overall, while it’s possible that the pandemic’s improvement of our environment was a false mirage, we can make that imagined progress real by campaigning for all forms of justice, whether it’s environmental or societal.

Rampant Roos: The Problematic Kangaroo Overpopulation

Kangaroos, the poster-animal of Australia, find themselves a topic of controversy due to its massively increasing population. Though adorable, the impact of kangaroos raise the question of whether its destruction on neighboring native species warrants the question of whether it is justified to increase kangaroo control.

Though an area may be protected, the rapid growth of herbivores due to the decrease of predators lead to the massive imbalance of an ecosystem. 

According to West Australian Environment Minister Stephen Dawson, the red kangaroo population has (insert hyperlink) increased over 345.94% from 409,422 in 2014 to 1,825,760 in 2018, and the Western Grey population has increased about 94% from 1,246,870 in 2014 to 2,423,800 in 2018 in West Australia alone. Throughout Australia, the numbers are just as gigantic: the graph below depicts the tremendous population growth over the last few years in South Australia.

Ironically, the protected areas are finding themselves lacking the ability to properly maintain biodiversity due to the ecological imbalance of herbivores. Though they lack the threat of human clearing,  the herbivores’ rabid consumption still endanger other native species. 

In addition to harming the protected areas, farmers find themselves asking “what is the best way to deal with the kangaroo problem?” According to the vice president of the Pastoralists and Graziers Association of West Australia, Digby Stretch, kangaroos should be used for pet and human consumption – thus killing two birds with one stone. Kangaroos cannot be simply fenced off farm land, and make the creation of grazing pastures and the planting of perennial species unrealistic. 

Personally, the control of kangaroos seems like a necessity due to the threat it poses on other native species. Even though it may seem inhumane to kill animals of a native species, controlling the kangaroo population better allows the balance to return between the other species instead of leaving the area barren. Extinction rates are rising in Australia, and with it, the solutions must also rise and adapt. Attempting to simply protect a singular species won’t fix an issue with a whole ecosystem. Moving forward, the conservation of biodiversity needs to adapt and evolve along with the specific problems of an ecosystem.

Diversity in Forests Will Save the Earth

Global warming is a fast approaching problem that the human race cannot ignore. It is caused by a number of factors, including the overuse of fossil fuels and farming. These things release the greenhouse gases that warm the atmosphere and contribute to the overall problem. As humans, we are in no rush to stop doing these things, as they provide transportation and food. However, there is one more factor that is more easily controlled than the former; deforestation. Deforestation actually affects the environment differently than burning fossil fuels and farming in that it doesn’t produce more greenhouse gases- it strips the earth of it’s ability to metabolize gases-namely, CO2-into oxygen. The solution easy; just plant more trees, right? While not inherently wrong, research has shown that there is a smarter way to do it

Aftermath of Mexican forests burned for agriculture.

The smarter solution is as simple as planting different species of trees instead of just one type. BEF-China was started in 2009 as a community effort between Germany, Switzerland, and China- an experiment to record the changes when biodiversity was altered. What they found was incredible; more than twice as much carbon was stored in the plots with more species than in those with monocultures. This was not the first time species-rich environments were tested, though; this project is backed up by and based on a series of experiments done in the 1990s, where it was found that each species differs in its ability to capture certain resources. This biodiversity will not only work in the limitation of multiple types of resources, but will also provide habitats for other animals, increasing biodiversity not just in plants, but wildlife as well.

If nothing else, this new research will inform forest clearers’ decision making. It is improbable that humans will suddenly stop needing lumber, but small steps such as clearing monocultural forests instead of diverse ones will make a big differences. Because of the rising interest in the replanting of forests, this information can improve daily life in that respect. The point of no return is coming upon us, and it is important that we as inhabitants of earth do everything we can and do it intelligently.

The Dangers of De-Extinction

uploaded by: FunkMonk
https://commons.wikimedia.org/wiki/File:Woolly_mammoth.jpg

Our once ludicrous dream of resurrecting our dead animal friends, like the wooly mammoth, is transforming into a real possibility! According to David Schultz’s article on Sciencemag.org, due to human advancements made in the study of genetic engineering, scientists at Harvard University were able to reach new heights in the efforts to tackle de-extinction. However, now that it is almost within man’s capability to actually bring back extinct animals, there is a spark of skepticism sweeping the scientific world. “The conversation thus far has been focused on whether or not we can do this. Now, we are progressing toward the: ‘Holy crap, we can—so should we?’ phase,” states ecologist Douglas McCauley. McCauley shines light on the sudden realization of how resurrection may be exciting, yet also very demanding and potentially harmful. Due to tight funds, it is believed that resurrection of one extinct animal can harm the life that is already struggling to be sustained on earth.

In order to reach this financial conclusion, researchers sought out databases in New Zealand, Australia, and New South Wales that are responsible for tracking the cost of conserving endangered animals. With this information from the databases, the researcher team believed that it would cost just as much, if not more, to maintain a resurrected species as it would an endangered species. What this means is, that the already tight funds that conservationists have to support endangered animals would be stretched immensely in order to fund the conservation of a newly resurrected wooly mammoth species, for example. Schultz writes, “The result, the team calculates, would be an overall loss of biodiversity—roughly two species would go extinct for every one that could be revived.” Because of the world’s budget for species preservation, and as author and biologist Joseph Bennet says, “It’s better to spend the money on the living than the dead.”

With that being said, it appears that our excitement around bringing the dead back to life has been faded by the the reality of our world’s finances. Though the study of extinction is still vast, perplexing, and amazing, the application of our resurrecting abilities may not happen anytime soon. Would you like to someday walk on the earth with our old prehistoric animal friends or would you rather save the world’s endangered species first?

https://phys.org/news/2017-02-resurrecting-extinct-species-terrible.html

 

Meet Charlotte’s Cousin (She’s Coming to the Web this Year for Thanksgiving)

You’re taking a nice autumn walk, enjoying the scenic pathway covered in red, yellow, and brown beautiful leaves. You stop at tree and notice one small, shriveled up decaying leaf still hanging. In a whimsical motion, you decide to pluck the final leaf… Aaaaaahhhh! Spider!

Folks, you’ve heard of the stick bug. Let me introduce you to the leaf spider (it has yet to be officially named!). Don’t worry, you’re unlikely to find one unless you’re in China.

The Leaf Spider’s Cousin: The Barn Spider                                      Credit: https://www.flickr.com/photos/tmh9/233350520

On a research excursion in Yunnan, China in 2011 (they published their findings on November 11), researcher Matjaz Kuntner* and his team came across an unusual species unidentified by the likes of man, the only known spider to resemble a dried up leaf!

Camouflage isn’t new in the animal kingdom; it’s a popular survival trait. But its more common with insects like the stick bug than arachnids.

However, roughly 100 species of spiders have bodies that don’t resemble your typical halloween decoration, ranging from a jumble of twigs to bird poo. But nothing like this!

They described the spider’s back as looking like a healthy green life while its underside resembled a dead brown leaf. And a hairy, stalk like structure branches out of its abdomen like the stem of a leaf! Take a look for yourself!

After searching for another specimen for two weeks, the researchers found only one more: a juvenile male. Searching the world’s museum for another sample, only one resembling the new specimen could be found (in a museum in Vietnam) but it is suspected this specimen comes from a known species whereas these two new individuals are a brand new discovery!

But the icing on the cake… as the title suggests, this spider is a cousin of Charlotte from Charlotte’s Web! Yes, the barn spider (Araneus cavaticus) and this new spider both belong to the Poltys genus along with 3,000 relatives (what a family reunion!).

One thing to note: the researchers noticed leaves stuck to the branch the spider was resting on by silk, indicating that the spider might have placed the leaves there on purpose. Keep an eye out for new research on the matter in the future.

So, the pivotal question I ask anyone who reads this… what should the spider be called? Do you know of any cool arachnids or insects that use camouflage in unique ways? Let me know in the comments.

Original Article: http://www.livescience.com/56910-leaf-mimicking-spider-found.html

 

*Matjaz Kuntner is a principal investigator with the Evolutionary Zoology Lab at the Biological Institute Jovan Hadzi, Scientific Research Centre of the Slovenian Academy of Sciences and Arts.

Deforestation is Out of Control

Deforestation has always been viewed as a problem by modern observers. No one can deny that the cutting down of forests is necessary for economic development and continued prosperity in some lumber rich nations, however, things are getting out of control. In a recent study, it was revealed that a total loss of 2.3 million acres of forest was destroyed in between 2000 and 2012. To put that amount in perspective, it is equivalent to six Californians or the entirety of the United States east of the Mississippi River. This massive loss of forest land was countered by a gain of only .8 million acres, resulting in a 1.5 million acre net loss of forest land around the globe.

According to Ritchie King, a reporter on the subject, “Deforestation at this scale is having a tremendous ecological impact, on both species and climate. From 2000 to 2011, deforestation effectively added 14.5 billion tonnes (16 billion tons) of carbon to the atmosphere, about 13% of the world’s total contribution to climate change.”  Some nations who, in the past, have been the greatest culprits of deforestation, such as Brazil, have cut back their logging and have greatly reduced the rate at which land is cleared, however, in other parts of the world, particularly Indonesia, (if you scroll to the bottom of the article there is a graphic) deforestation has sped up rapidly. Not only does deforestation threaten the world as a whole through the production of a large precent of the earths greenhouse gases, but it also threatens the delicate forest ecosystems around the world. Heavy deforestation in areas with Rain forests, such as Brazil and Indonesia threatens the unique species of plants and animals which live there, and threatens to reduce the biodiversity present on Earth.

Deforestation in Brazil

Powered by WordPress & Theme by Anders Norén

Skip to toolbar