BioQuakes

AP Biology class blog for discussing current research in Biology

Tag: bacteria (Page 1 of 2)

Genetic Engineering will Create Super Humans?!

“Synthetic microbiome? Genetic engineering allows different species of bacteria to communicate”

Before seeking to analyze how genetic engineering enables the alteration of the microbiome, it is essential to understand the nature of the microbiome. Humans’ microbiomes consist of “trillions of microorganisms (also called microbiota or microbes) of thousands of different species.” Initially, peoples’ microbiomes are solely determined by their DNA; however, as time goes on, a person’s microbiome can be shaped by other factors, including the environment in which they live, or their diet. The microbiome contains both helpful and deleterious microbes, but “In a healthy body, pathogenic and symbiotic microbiata coexist without problem.”

According to researchers from the Wyss Institute at Harvard University, Harvard Medical School (HMS), and Brigham and Women’s Hospital, it may now be possible to create a “synthetic microbiome.” The team did a study in which they utilized a particular type of quorum sensing known as acyl-homoserine lactone sensing. Quorum sensing allows bacteria to regulate the expression of genes and to detect the size of bacterial colonies, through signal molecules. First, the team inserted “two new genetic circuits into different colonies of a strain of E. coli bacteria.” One of the circuits acted as a “signaler” and the other acted as a “responder.”

File:E. coli Bacteria (16578744517).jpg Picture of E. Coli bacteria

In short, the team inserted a single copy of luxl, a gene activated by the molecule anhydrotetracycline (ATC), into the signaling circuit. The signaling molecule formed by this gene then binded to the receptor circuit, which activated another gene, known as cro. The cro gene creates Cro proteins, and these proteins triggered a “memory element” within the responder circuit, in which two more genes, LacZ and another cro, were produced. If the signaling molecule is received (which it was), the presence of LacZ causes the bacterium to turn blue. Most importantly, the additional cro gene essentially keeps the “memory element” on, so this cycle continues.

To make sure that this system works in living organisms, the researchers tested it in mice. Signs of signal transmission in the mouse’s gut between the signaler S. Typhimurium bacteria and E. coli responder bacteria were detected. In other words, the engineered circuits allowed the bacteria to communicate with one another.

While these findings are extremely exciting, scientists have yet to discover whether or not other genetically engineered species of bacteria will also be able to facilitate communication between molecules. A Founding Core Faculty member of the Wyss Institute said that “[They] aim to create a synthetic microbiome with completely or mostly engineered bacteria species in our gut, each of which has a specialized function.” If this is achieved, we will move one step closer to becoming super humans!

Feature Image: “Free for Commercial Use” and “No attribution required”

60 Million Year Old Farmers

Microbial ecologist Cameron Currie of the University of Wisconsin-Madison has made an intriguing discovery about the lives of some South American leaf-cutter ants. He found that long before humans cultivated fruits and vegetables for food ancient leaf cutter ants where cultivating fungus. The ants farm the fungus as a food source, but there are pathogenic bacteria that can kill the fungus. To thwart these malicious bacteria, the ants have formed a symbiotic relationship with a different bacteria known as actinobacteria. These actinobacteria fight off the pathogenic bacteria and protect the fungus.

File:Leafcutter ant.jpg

Leaf Cutter Ant

But how could we possibly know if fungal-farming ants existed millions of years ago?

File:Baltic amber inclusions - Ant (Hymenoptera, Formicidae)10.JPG

Ant Trapped In Amber

Well, I am glad you asked. Curries research focused on a 20-million-year-old sample of amber that had a few of these green-thumbed ants trapped inside. The ants had specialized pockets in their heads called crypts where the ants store these actinobacteria. These leaf cutter ants are walking pharmaceutical factories.

It is intriguing that some of the smallest insects on the planet where farming and cultivating food millions of years before we even thought of it. Not only that, but they have been using anti-biotics for millions of years whereas humans have only started using them 60 or 70 years ago.

What lessons do you think humans today can take away from these ants? Could they be the key to our anti-biotic overuse crisis?

C. Difficile Colitis: How To Prevent It

What is Clostridioides difficile Colitis, or C. difficile Colitis, and how can you get it? C. difficile Colitis is an infection of the Colon caused by an excess amount of the Clostridioides difficile bacterium in your intestines. Some symptoms of the infection include diarrhea, stomach pain, nausea, vomiting, fever, and blood in stool. C. difficile Colitis is spread by feces, it usually comes from touching a contaminated surface, then touching your mouth. As repulsive as it sounds, it’s actually a lot more common than you might think. Statistics reported by the U.S Centers for Disease Control and Prevention estimated that in 2015, more than 148 out of every 1,000 people contracted C. Difficile Colitis.

Clostridium Difficile Bacteria

 

Experiment:

Confused and concerned by these findings, Kashyap, a Gastroenterologist at the Mayo Clinic in Rochester, Minnesota, alongside her team, decided to conduct an experiment on mice to get to the bottom of this infection. It is known that a disturbance in the combination of gut microbes within a mouse, can, in many cases, cause a C. Difficile infection inside of them. That being said, the researchers, at random, extracted and transported fecal matter from people’s colons with either normal or disturbed microbiomes, and transplanted the gut microbes into the mice’s stomachs.

Results of the experiment, as they predicted, showed that the mice that received transplants from people with disturbed microbiomes were not able to fight off the C. Difficile infection as well as the mice who received transplants from people with normal microbiomes, could. The results showed that, anteceding the experiment, the mice who had received the transplant of disturbed gut microbiomes, experienced an increase in a few specific amino acids found in their gut, especially proline. Proline is a major food source of C. Difficile bacteria, which in turn, strengthens the bacteria, giving it an advantage over other microbes found in the gut, that do not consume proline. This proved that proline-deficient people have much less C. Difficile bacteria in their intestines, thus making them far less susceptible to contracting the infection.

All that being said, the best way to prevent C. Difficile Colitis, is to avoid any and all antibiotics containing proline and to consider taking probiotics with proline-eating bacteria in order to hopefully outrun and weaken C. Difficile bacteria within the intestines, helping to restore the balance of microbes. Please don’t hesitate to comment what you think!

CRISPR Defends Bacteria, and Helps Scientists Discover New Bacterial Defenses

Although CRISPR is known for being a gene-editing tool, it can be used in other areas, such as a defense mechanisms in bacteria. This discovery “Probably doubles the number of immune systems known in bacteria,” according to a microbiologist at the University of California. Bacteria have to defend themselves against Phages, which take control over bacteria’s genetic machinery and force them to produce viral DNA. Bacteria use CRISPR to defend themselves against Phages because it stores a piece of past invaders DNA so bacteria can recognize and fight of those future viruses.

 

Photo By J LEVIN W (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

the researchers found that nine groups of bacterial genes were defense systems, and one system protected against plasmids. The data revealed a possible shared origin between bacterial defense systems and defense systems in more complex organisms. Some of the genes contained DNA fragments that are also  important parts of the immune system in plants, mammals, and invertebrates. The discovery of more bacterial defense systems poses the question of wether they will also be useful biotechnology tools like CRISPR is.Only 40% of bacteria have CRISPR, so scientists searched for other bacterial defense mechanisms. To do this, they looked at genetic information from 45,000 microbes, flagging genes with unknown functions located near defense genes, because defense-related genes cluster together in the genome. The researchers then used genomic data to synthesize the DNA and  inserted them into Escherichia coli and Bacillus subtilis, which can both be grown and studied in the lab. They then studied how well bacteria defended themselves during phage attacks with various genes detected. If eliminating certain genes deterred the bacteria’s defense, that determined that those specific genes were a defense system.

 

For more information, click here. For more information on CRISPR’s role in bacteria, click here.

Bacteria Not So “Bad”, After All?

Photo Link: Wild Garden of Gut Bacteria, By: Nicola Fawcett

Most of us are used to the common notion that bacteria may not be the most beneficial factor in maintaining your health.  Thats why the results of a recent research study conducted by scientists at Babraham Institute in collaboration with colleagues in Brazil and Italy, yielding evidence that in fact good bacteria in the gut can control gene expression in our cells, is game-changing!

The research team, led by Patrick Varga-Weisz, made this discovery by studying the gut bacterias found within various mice. Their attention was quickly drawn to the mice that had lost most of their gut bacteria. It became apparent that in the mice with a very low amount of the bacteria within their gut, contained increased amounts of the “HDAC2 protein”.  When investigating deeper into HDAC2, it was found that increased amounts of this particular protein are associated with increased risk of colorectal cancer.

This new research also resulted in the finding that the amount of chemical markers on our genes, are increased by short fatty acids. These specific chemical gene markers, known as “crotonylations”, were only recently discovered and are newly classified as genome “epigenetic markers”. The researchers then found that by shutting down the HDAC2 protein, short chain fatty acids increase the number of crotonylations.

Ingestion of fruits and vegetables into ones healthy diet are vital – ultimately determining how chemicals produced by gut bacteria, affect genes in the cells of the gut lining. In other words, the short fatty acids, which come from those dietary elements, have the ability to move from bacteria into our own cells, and from there cause changes in gene activity and cell behavior.

In the end, the scientists were strongly convinced that the ability to turn off and on genes, is determined by changes in crotonylation. This inferred that the existence of crotonylation in the genome of cells is vital to protect the body from cancer. Therefore, the pretense of good bacteria is very important for the prevention of disease and illness in the body!

As someone with a strong passion for the science, and also very influenced and intrigued by medicine, I very much enjoyed this study. As the boundary to curing cancer is still a hurtle doctors and scientists try to transcend everyday, studies like these, are both hopeful and fascinating, to me. Also, as someone curious about how the human diet ultimately affects the functions and inner workings of the body, this research again was very engaging and interesting!

Primary Source Article: How good bacteria controls your genes

Secondary Source: Wikipedia – Gut Flora (Gut Bacterias)

 

Bacteria may be more complex than we think

Photo by Wikimedia Commons

A common public misconception is that bacteria live alone and act as solitary organisms. This misconception, however, is far from reality.

Bacteria always live in very dense communities. Most bacteria prefer to live in a biofilm, a name for a group of organisms that stick together on a surface in an aqueous environment. The cells that stick together form an extracellular matrix which provides structural and biochemical support to the surrounding cells. In these biofilms, bacteria increase efficiency by dividing labor. The exterior cells in the biofilm defend the group from threats while the interior cells produce food for the rest.

While it has long been known that bacteria can communicate through the group with chemical signals, also known as quorum sensing, new studies show that bacteria can also communicate with one another electrically. Ned Wingreen, a biophysicist at Princeton describes the significance of the discovery; “I think these are arguably the most important developments in microbiology in the last couple years, We’re learning about an entirely new mode of communication.”

An entirely new mode of communication it is! Heres how it works:

Ion channels in a bacteria cell’s outer membrane allow electrically charged molecules to pass in and out, just like a neuron or nerve cell. Neurons pump out Sodium ions and let in Potassium ions until the threshold is reached and depolarization occurs. This is known as an action potential. Gurol Suel, a biophysicist at UCSD emphasizes that while the bacteria’s electrical impulse is similar to a neuron’s, it is much slower, a few millimeters per hour compared to a neuron’s 100 meters per second.

Photo by Chris 73 Wikimedia Commons

So what does this research mean?

Scientists agree that this revelation could open new doors to discovery. Suel says that electrical signaling has been shown to be stronger than traditional chemical signaling. In his research, Suel found that potassium signals could travel at constant strength for 1000 times the width of a bacteria cell, much longer and stronger than any chemical signal. Electrical signaling could also mean more communication between different bacteria. Traditional chemical signaling relies on receptors to receive messages, while bacteria, plant cells, and animal neurons all use potassium to send and receive signals. If these findings are correct, there’s potential in the future for the development of new antibiotics.

Learning about electrical signaling in bacteria has complicated our understanding of these previously thought to be simple organisms. El Naggar, another biophysicist at USC says, “Now we’re thinking of [bacteria] as masters of manipulating electrons and ions in their environment. It’s a very, very far cry from the way we thought of them as very simplistic organisms.”

 

 

Killer Cells Caught Red-Handed!

Antibiotics are most commonly used to treat bacterial infections, but bacteria are rapidly able to evolve and resist these drugs, contributing to superbugs. Immune killer cells or white blood cells, however, are seemingly more effective at destroying bacteria cells. How do our immune cells fight bacteria so efficiently? What exact mechanisms do killer cells use to track and destroy bacteria and can we replicate those mechanisms with drugs?

Image result for white blood cells

White Blood Cell (farthest to right)

A common way immune cells can the trigger death of bacteria is by oxidizing the bacterial cells. However, immune cells are still able to destroy bacteria in environments without oxygen leading scientists to believe other methods are also used in attacking bacteria.

Scientists have recently discovered that immune cells methodically kill cells without the use of oxygen. The immune cells do this by shooting enzymes into bacteria to program the bacteria to self-destruct. Scientists have discovered this by observing immune killer cells as they destroy E. coli and the bacteria responsible for Listeria and tuberculosis. They measured the protein levels of each different bacteria before, during, and after the immune cells killed the bacteria. Each bacterial strain started with about 3000 proteins and ended up losing around 10% of their proteins due to the immune cells injected enzyme called granzyme B. Those 10% of proteins destroyed, however, were necessary to the survival of each bacteria. Granzyme B also shuts down ribosomes preventing the bacteria from making new proteins.

This discovery is significant at a time where antibiotics are becoming less efficient and superbugs are becoming prevalent.  Scientists hope to design a new drug that will treat bacterial infections in a similar way to our own immune killer cells.

The SHOCKING Truth About Tattoos!

Dying to get a tattoo? You might want to hold that thought.

It might seem cool to have something permanently tattooed on your body, whether it represents an important symbol or not. People get tattoos for various reasons but many people see them as works of art that they want to display on their bodies. People spend much time to think about what images or symbols they want to display. However, few think about what happens after they get this tattoo. Yet, the after effects should be the most important consideration.

What effects does ink have on the body?

Tattoo artists inject ink into the dermis, the layer of skin under the epidermis, filled with blood vessels and nerves. But does the ink really just stay on the surface of the skin? Research and testing on rats has shown that some ink particles can travel through the bloodstream and enter the lymph nodes within minutes, which can cause major harm to the body. Ines Schreiver, a scientist who is part of a team of German and French scientists, found Titanium dioxide along with metal particles such as nickel and chromium (shocking) in the lymph nodes. These ink particles can cause complications such as enlargement of lymph nodes and blood clotting.

What about contamination of ink?

Furthermore, tattoo ink production is highly unregulated. So, no one knows for sure what companies are putting in the ink. According to Dr. Linda Katz, director of the FDA’s Office of Cosmetics and Colors, there is no fool-proof way of telling whether tattoo ink is contaminated. A study in Denmark showed that about 10% of unopened tattoo ink bottles were infected with bacteria.

So, what’s the verdict?

This study alone should make you think twice about getting a tattoo. Although tattooing has been part of human culture for countless years, these recent findings should create a more cautious attitude towards tattoos. There are many other ways to symbolize something that’s important to you or to make yourself look different.  You need to always think first about your health.

For more information click here.

The 450 Million Year Old Superbug

The first superbug may have occurred 450 million years ago when animals decided to leave the water and begin to live on land.  The scientists at the Broad Institute found evidence displaying a group of antibiotic-resistant bacteria which are as old as the first land animals. Like us humans, the animals possessed these superbugs in their guts. Since the bacteria has been around for so long it has given it time to adapt and develop necessary traits to make it resistant to antibiotics like penicillin. The specific superbug which has lasted since the first land animal is Enterococci.

Photo by Eric Erbe

They can be considered the “godfather” of superbugs. Enterococci were found during the 80’s and were one of the first pathogens to be known to resist antibiotics. Enterococci bacteria today is a major cause of hospital infections in the United States and infects up to 70,000 Americans and kills up to 1,000 each year. Enterococci is so special because it possesses a number of genes which are focused on “hardening and fortifying” the cell wall. The reinforced cell wall allows for the bacteria to fight off disinfectants and not dry out. Research also shows that the fortification was added around the same time that animals began to come ashore. Since the two events happened around the same time it is assumed that the new fortification was to assist the survival of the bacteria in the new environment.

Enterococci had to create new fortification against new elements on land which was not present in the water. Since Enterococci is located in the gut some are excreted through feces. In water, the excreted Enterococci would end up at the bottom of the ocean floor which was moist and filled with nutrients, similar to the guts of a marine animal. When the Enterococci was released on land it would meet a harsher environment where they were exposed to Ultra-violent light from the sun. This caused the bacteria to dry up and die. Eventually, the bacteria developed and picked up the fortification needed which now helps them to thrive in hospitals. Their shell from 450 million years ago allows them to be resistant to the typical effects of cleaning measures in hospitals. The protection the bacteria has is what causes it to be considered a superbug. Even though superbugs are becoming more prominent the understanding of the so-called “godfather” of superbugs may help us to find ways to defeat Enterococci and hopefully other superbugs.

Could a new bacterial test reduce the chances of new superbugs emerging?

We’ve all suffered from a nasty bacterial infection of some sort, like strep or a sinus infection. Usually, we go to the doctor and are prescribed antibiotics, and are cured in a few days. The problem with this is that bacteria are becoming multi-drug resistant and skipping over weaker antibiotics and immediately using stronger ones to increase the effectiveness. This is because to test out if an infection is resistant to antibiotics, a doctor would have to send a sample to a lab and wait 2-3 days for the results (Fore more information on standard bacterial lab tests, click here). The more antibiotics that are overused and misused, the more super-bugs (multi-drug resistant bacteria) will emerge.

Luckily, there is a new advancement in testing bacterias resistance to antibiotics. A new test has been developed at Caltech that can identify antibiotics resistant bacteria in as little as thirty minutes. The test was focused on UTI’s; they took a sample of infected urine and divided into two groups. One group was incubated, and the other was exposed to antibiotics for fifteen minutes. The bacteria were then lysed, or broken down, to release their cellular contents. The contents are then run through a process combining d-LAMP and Slip chips. This process replicates specific DNA markers which are imaged and counted as fluorescent spots on the chip.

This Photo is credited to Wikipedia

The logic behind this test is that antibiotics affects the DNA replication of bacteria, so there will be less fluorescent spots on the chip for bacteria that is not resistant to bacteria. If the DNA are resistant to bacteria, the DNA replication, fluorescent spots, will be the same in both groups. The tests had a 95% match with the standard two day test, (hyperlink info about standard test) and was tested on 54 subjects with UTI’s caused by the same bacteria, Escherischia Coli.

The creators of this test, Ismagilov, Schoepp, and Travis Schlappi, are continuing to test other bacterial infections, and hope to modify the test to be able to test blood infections. Blood infections are more difficult to test because the presence of bacteria in blood is significantly less than in urine. Having a test like this, for many types of different bacteria, which could be performed in one doctors visit would help reduce the overuse and misuse of bacteria, thus decreasing the chance of new superbugs emerging.

For more information and visuals click here.

 

Birthday Cakes: the New Bacterial Hangout

Various media outlets have been warning readers about the various unexpected places that germs like cold viruses and bacteria can be found: on a cellphone, the kitchen sink, and a toothbrush. Cake frosting can now find itself on that very list, because according to a study by food safety professor Paul Dawson, blowing out birthday candles can increase bacteria growth on the surface of cake icing by 1,400%.

Dawson conducted the study as a series around common questions regarding food safety. After preliminary tests showed that blowing on nutrient agar (edible sugar-based foods) may be a source of bacterial transfer, Dawson and his Clemson University students conducted a formal study in which the research objective was to “evaluate the level of bacterial transfer to top the of a cake after blowing out the candles”. Rather than using a real cake, they frosted a piece of foil over a cylindrical styrofoam base. In attempt to simulate an authentic birthday party, Dawson and his team had test subjects consume pizza in order to stimulate their salivary glands, then extinguish lit candles by blowing. This process was repeated multiple times Once the icing samples were sterilely recovered, they found that the bioaerosols in human breath led to a definitive increase in bacterial transfer. On average, the amount of bacteria on the frosting increased by 14 times. In one trial, it increased the number of bacteria by more than 120 times.

However, birthday cake lovers should not despair. Dawson says, “It’s not a big health concern in my perspective.” Human saliva is already abundant with bacteria, most of them harmless. If blowing out candles on birthday cakes posed a significant risk in the spread of bacterial diseases, it would be extremely apparent due to the popularity of the tradition. But if need be, especially paranoid germaphobes now have the option of “germ-proofing” birthday cakes with sanitary birthday cake covers especially equipped with holes for candles. So we can have our cake, and eat it too.

 

Source: http://www.huffingtonpost.com/entry/blowing-out-birthday-candles-increases-cake-bacteria_us_5989fde1e4b0f25bdfb31ffc?utm_hp_ref=health-and-wellness

Seagrasses: Benefitting the Ecosystem

Seagrasses have been known to improve water quality greatly, however it was only recently that scientists discovered other major benefits of the plants that reside in the ocean. The name seagrasses is a misnomer, for they are actually plants that grow in shallow ocean water. Seagrasses are one of the largest stores of carbon in the ocean, and they also remove excess nitrogen and phosphorous from the water.

A few years however, ecologist Joleah Lamb’s colleagues fell ill with amoebic dysentery. This is an intestinal illness that they contracted while conducting research on coral reefs in Indonesia. The illness can be caused by the release of raw sewage into the ocean by a city, which leads to a drastic increase in the populations of shoreline bacteria. The water collected close to the shore had been compared to offshore tidal flats and coral reefs with seagrass beds. The two different sites were very close to one another, yet the water where the seagrass was had a significantly smaller amount of Enterococcus bacteria. The bacteria in areas with seagrass was only 1/3 of that in other areas that did not have the plants. This bacteria is not only dangerous for humans, but is harmful for fish and other species as well.

While at this moment it is uncertain how the seagrasses clean the water, we know that seagrasses trap small particulates and prevent them from flowing on in the ocean. It is believed that the plants would catch the bacteria in the same way, or that the leaves might emit antimicrobial compounds that directly kill the bacteria. Another possibility could be that seagrasses release oxygen made during photosynthesis, and the oxygen is toxic to pathogens. Also, it is noted that seagrass meadows often are located next to coral reefs, so some suggest that they work together to protect one another from bacteria and other possible dangers.

 

Further reading:

http://www.smithsonianmag.com/smart-news/seagrasses-reduce-bacteria-polluted-waters-180962177/

https://www.newscientist.com/article/2121502-seagrass-meadows-help-remove-dangerous-bacteria-from-ocean-water/

https://www.health.ny.gov/diseases/communicable/amebiasis/fact_sheet.htm

Could A Computer Detect Your Sick Gut?

Photo by Nicola Fawcett (photo source)

 

The human gut microbiome is a system specially revolved around the genetic makeup of an individual person. These gut biomes are the subject of many studies by scientists who are interested in the small world of bacteria living inside of our stomachs and its relation to our health or illness. Many humans have the ability to recognize a healthy or unhealthy human gut microbiome, however, is it possible for a computer to have this same ability? According to the impressive research results developed by a group of scientists at the University of California San Diego, it is possible for a computer to be trained to differentiate a sick gut microbiome compared to an unhealthy one.

In order to reach this innovative conclusion, these scientists utilized metagenomics, a gene sequencing technique, to break up the DNA of hundreds of microbes residing in the human gut. The scientists took gut bacterial samples from the stool samples of thirty “healthy” and thirty “unhealthy” people. The unhealthy people whom had samples taken from them were either diagnosed with autoimmune Inflammatory Bowel Disease. With these 60 samples total, the scientists were able to sequence 600 billion DNA bases and put the information into a computer. After that, the scientists underwent a complex process of translating reconstructed DNA of the hundreds of microbes into thousands of proteins, which were then categorized into thousands of protein families. The tedious differentiation and categorization of certain proteins allows the scientists to see the activity of the bacteria and then program it into the computer so it, too, would be able to recognize these proteins and bacteria. Bryn C. Taylor, One of the scientists involved in this research says that, “You can try to categorize healthy and sick people by looking at their intestinal bacterial composition…but the differences are not always clear. Instead, when we categorize by the bacterial protein family levels, we see a distinct difference between healthy and sick people.” Incorporating this method of distinction with the storage of healthy and unhealthy patient data into computers is an effective way of “training” a computer how to detect a sick or healthy human gut due to a distinguishable difference in bacterial activity, protein presence, etc..

Overall, it seems that these scientists at the University of California San Diego have made groundbreaking progress in the future usage of computers in the detection of an unhealthy or sick human gut microbiome. Do you think the development of a computer’s ability to detect a sick gut will be ultimately more beneficial to the world of health and science, or will it just be an unnecessary new trick that computers can learn? The next time you feel like you’ve got a stomach bug, you just might be scheduling an appointment with a computer instead of your doctor.

https://commons.wikimedia.org/wiki/File:Wild_garden_of_the_gut_bacteria_3.jpg

 

Parents Take Warning: Antibiotics Can Be Harmful to Infants

Antibiotics are the marvel of modern medicine. They have brought about incredible medical advances, treating bacterial diseases and helping to prolong lifespans in modern times. But a new study conducted by researchers at the Massachusetts General Hospital and the Broad Institute has shined a light on the potential negative effects antibiotics can have on an infant’s health.

https://www.flickr.com/photos/herebedragons/2573487530

The study, conducted in partnership with a team of Finnish researchers, took monthly fecal samples from 39 children from birth until they were 36 months old and analyzed the sample using standard, RNA sequencing procedure to identify different microbes. During the study, 20 of the children had taken antibiotics for respiratory or ear infections ranging from 9 to 15 treatments over the course of the study. From this data, the researchers could analyze the diversity of the gut microbiome of these participants with respect to their antibiotic usage.

The researchers had chosen to analyze the effect antibiotics have on the gut microbiome in young children because of the pivotal role antibiotics appear to play in human health during early development. Low diversity in the early years of life of this collection of bacteria residing in the intestines has been linked to allergies and autoimmune diseases.

The results of this study show a decrease in the diversity of the microbial gut populations in infants who took antibiotics. This was even more pronounced when the infants were marked with a specific signature low in a bacteria known as Bacteriodes (this decrease in Bacteriodes has been speculated to be linked to Caesarean section births in the past but the researchers found this rationale to be inconclusive as well as another rationale that prolonged breastfeeding led to a stronger gut microbiome with higher levels of Bifidobacteria).

When the infants had taken antibiotics, a single strain of bacteria tended to rule their gut with only a few species surviving. On the whole, the gut microbiomes of these participants were less stable and had higher levels of antibiotic resistant genes.

Don’t get me wrong: antibiotics are an incredible innovation that has saved millions of lives. But, be careful in thinking they are a cure all. They’re side-effects might be more harmful than you think, especially in children.

How does this research change your perception of antibiotics?

 

Our Intestines Cure Cancer??

There are over one hundred trillion organisms- most are bacteria- living in our intestine today. These are referred to as the gut microbiota.

While trillions of bacteria sounds scary, they can actually be very helpful. Research has been done worldwide and the discovery has been that gut microbes actually can kill cancer cells all over the body. (Not just in the intestines) But how? Gut microbes and cancer actually cross paths. Gut microbes can manipulate the immune system and can either increase inflammation or lower it as needed. This means the bacteria can actually work with cancer treatments, boost T-cells, and control other factors that help cancer grow such as fungi, or viruses.

However, this is not all. While some cells help against cancer growth, others do the opposite. It varies cancer to cancer, and all have different results. As said by microbiologist and immunologist Patrick Schloss “What we really need is to have a much better understanding of which species, which type of bug, is doing what and try to change the balance.” So more research is still being done to decide how to control the microbiota, but a possible theory is that because it’s in the intestine it is related to our metabolisms and so what we eat controls the bacterium- this can also then effect the colon, thus effecting more cancer: colon cancer.

 

What’s Causing Your Migraine? The Answer May Be Inside Your Mouth.

photo by user "taennit" on on deviantart.com

photo by user taennit on on deviantart.com

Have you ever been going about your day and suddenly you’re hit with the feeling of needles ricocheting against the walls of your skull? Frustration grows inside you as you ponder what could’ve possibly triggered your migraine this time. Millions of Americans are struck with similar pain and turmoil every day, which makes the cause of migraines an in-depth and on-going research topic. Though the cause of migraines remains a bit blurry, it is believed that neurotransmitters, like serotonin, are involved in the development of a migraine. Known triggers of this hindering head pain are hormonal changes, stress, and our diets. Author Tim Newman’s article Could Migraines Be Caused by the Bacteria in Our Mouths?, published on MedicalNewsToday.com, suggests that migraines can be caused by the nitrate-filled foods millions of people consume on a daily basis.

Though you may resort to a glass of wine or piece of chocolate for relaxation after a hectic day, these two things can ultimately make your day into an all but relaxing evening. Both chocolate and wine possess high nitrate levels, as do processed meats and leafy, green vegetables. When nitrate is consumed through food, bacteria in the mouth converts nitrate into nitrite. Nitrites then enter the body and can be formed into nitric oxide which is helpful in reducing blood pressure and boosting cardiovascular health as a whole. Because of the benefits these forms of nitrate can have on the body, many people are given drugs containing nitrate in order to help with their health problems. Author Antonio Gonzales and programmer analyst Rob Knight found that four in five of the people that take these drugs also experience extreme headaches or migraines as a side effect. With this information, both Gonzales and Knight used information collected by the American Gut Project to further inspect the links between oral bacteria, diets, and migraines.

When someone takes drugs filled with nitrate or eat nitrate-sufficient food, their body must produce the necessary amount of bacteria or enzymes to break up the nitrate and turn it into nitrite or nitric oxide. Both Gonzales and Knight noted that people with migraines tend to have a significantly higher amount of nitrate-related bacteria located in the mouth, thus increasing the chance that the amount of nitrate-related bacteria in the mouth may correlate with the increased occurrence of intense headaches and/or migraines.

That all being said, the world of migraines is still a bit fuzzy to all of us and all we can do is continue to research the mysteries of this painful phenomenon. I won’t say that the results of these studies should be totally cast aside, but what I will say is that until nitrate-filled food and the presence of oral bacteria are a blatant cause of migraines, you shouldn’t flush those leafy, green vegetables, throw away the chocolate, or pour all the wine down the drain just quite yet.

http://www.huffingtonpost.ca/2016/10/20/migraines-bacteria-mouth_n_12573852.html

http://www.netdoctor.co.uk/healthy-living/wellbeing/news/a27149/bacteria-in-mouth-cause-of-migraine-study/

 

 

 

 

 

 

The Resurrection of “Dead” Bacteria

Many kinds of bacteria have the capacity to radically alter their metabolism in order to switch into a dormant state. This allows them to survive without any possibility of growth. One reason this might be advantageous to bacteria is if their microbes do not have a substantial amount of food. The cells’ revival process follows a strict genetic timetable. This is an important survival strategy.

One of the oldest types of bacteria are cyanobacteria – going back more than 3 billion years. Their activity released oxygen into the atmosphere, therefore enabling life on earth in its current state. When nitrogen, one of their major nutrients, is lacking, these cyanobacteria cease their growth and enter a dormant state. They dismantle their photosynthesis apparatus and lose their color. This allows them to survive long periods without requiring nutrients. If they become exposed to an accessible supply of nitrogen, they return to normal life within 48 hours. It is intriguing because the cells appear dead and then out of nowhere they return back to normal.

2000px-cyanobacterium-inline-svg

Diagram of Cyanobacteria

Through various experiments it was found that the cell revival process began almost immediately once nitrate was added. This is a highly organized process.

Phase One: Bacteria suppress all remaining photosynthesis activity and tap into reserves to obtain energy quickly

At First: Intake and processing of nitrogen. The production of protein synthesizing mechanisms are activated.

12-16 Hours Later: Photosynthesis begins

48 Hours Later: Full capacity reached. Cells begin to grow and divide again

 

There are copies of DNA that are not translated into proteins found in sections of uncoded RNA. These are important switches in the awakening process. This genetically coded program allows cyanobacteria to colonize environments where the nitrogen supply is inconstant. It also allows them to survive environmental stress and survive over three billion years of evolution. This is not the only bacteria that is capable of this phenomena. This can help scientists better control the spread of dangerous bacteria.

 

Source: https://www.sciencedaily.com/releases/2016/10/161006124409.htm

Other Resources (For More Information on This Topic):

http://phys.org/news/2012-02-bacteria-dead.html

Understanding how bacteria come back from the dead

We Eat What We Are: The Importance of Microbes in Our Gut

Unknown

Photo of microbes (licensing information here)

Ever since the discovery of the microbes, scientists have become very aware of the miniature world of microbes. This early awareness was later translated to an understating of how bacteria and other microbes effect the world we live in. Of course, early scientific and medical research often focused on microbes that cause diseases and how to treat them. However scientists have become aware that each individual is in fact a biome of microbes living on our exterior and inhabiting our interior organs.  Bacteria also play an important role in digestion helping us break down certain foods, producing vitamin and allowing for efficient absorption of nutrients. Increasingly, investigators have began exploring how the micro biome in our digestive track impacts our health and wellbeing.

Gut bacteria appear to play a role in matters of obesity, the development of certain types of cancer and ulcers. They do so by producing certain chemicals that affect a variety of health outcomes. Gut bacteria also produce a wide variety of neurology related chemicals that affect mental processes such as depression and anxiety disorders. Some studies now point to a relationship between autism and particular levels of gut bacteria.

The recognition of the importance of gut bacteria in health and disease have implications in a number of areas. First of all it suggests that a healthy diet should involve the encouragement of the development of good gut bacteria. It also suggests that gut bacteria diversity is a positive goal. Lastly, the results of many of these studies of the significance of gut bacteria in regard to disease point to the need to incorporate the study of an individuals gut bacteria as part of the treatment regiment to fight particular illnesses

 

 

You Are What You Eat

8146322408_a76aab3ae2_o

Original Link To Image: https://www.flickr.com/photos/pnnl/8146322408

It has been known for some time by scientists that variations in food intake lead to various different gut floras.  However, that theory had only been tested on mice…Until now.  Lawrence David, assistant professor at the Duke Institute for Genome Sciences and Policy, led an experiment that resulted in the discovery that different foods not only lead to different bacteria, but the bacteria themselves experience gene variations.  Although the discovery itself is truly amazing, the celerity at which the changes occur is the most impressive.  University of Chicago’s professor of medicine Eugene Chang specializes in gastroenterology originally thought the changes would take months or even years but the study showed that the changes started to take place within a couple of hours.  There were also changes in the amount of bile acid secreted into the stomach and that microorganisms native to cheeses and cured meats were stronger against this.  The real question is “Why is this relevant?”  To Chang, the first is evolutionary.  Ancient humans who experienced rapid dietary changes could successfully switch from nuts and berries to meat with little gastric distress and maximum absorption of nutrients from even the most unrecognizable foods.  The second is the effects of diet on certain diseases.  Chang, who has been leading a research team to discover the connection between  B. wadsworthia and colitis in mice is yet to apply these tendencies to humans.  However, he believes there could be a connection.  His experiments show just how sensitive the body is to dietary change.  Dramatic changes in ones diet could lead to a brief exposure to harmful diseases such as inflammatory bowel disease.  The experiments are difficult to conduct however because according to David, it’s hard to find even 10 people willing to dramatically change their diets for science.

original article: http://www.scientificamerican.com/article/the-guts-microbiome-changes-diet/

similar article on the gut micro biome: http://www.medicalnewstoday.com/articles/290747.php

It’s Time to Re-program the Human Gut

(Photo of the human gut (licensing information here)

“What kind of water would you like? Tap or bottled?” “Bottled, please.”

It is known that when traveling internationally, it is typically unsafe to drink tap water. This is due to the lack of familiarity with the filtering systems used by other countries. This caution extends to certain foods as well. However, Dr. Pamela Silver, Dr. Jeffrey Way, and Dr. Donald Ingber, investigators at Harvard’s Wyss Institute for Biologically Inspired Engineering, may have found a solution to many acute gastrointestinal illnesses, such as this one, that affect the human gut microbiome.

Their goal is to create a bacteria that can detect and fight microbial invaders. This genetically engineered bacteria will specialize in detecting the chemicals given off by gastrointestinal inflammation. After the bacteria makes the detection, it will begin to attack all microbial invaders and restore normality within the gastrointestinal tract. The bacteria will be created in a probiotic pill form. In order to make sure that this probiotic pill does not have a negative impact on the environment after it exits the gastrointestinal tract, Silver and Way will ensure that it will not work unless it is in a specific environment and is triggered by specific chemical signals, both specific to the environment and signals found in the gastrointestinal tract.

Silver, Way, and Ingber will use the gut-on-a-chip technology to test this probiotic pill. The gut-on-a-chip technology will allow them to mimic gastrointestinal inflammation with living human cells. The team plans to study the response of invaders and pathogens, that are causing the inflammation, to the genetically engineered bacteria.

This research will allow for the treatment of a multitude of gastrointestinal illnesses, as well as the introduction to treating other diseases that negatively impact the human gut microbiome. I would love not having to worry about what I drink or eat on vacation! I am excited to see where this newly found research takes the discussion and the treatment of illnesses related to the human gut micobiome.

Source: Biology News

Page 1 of 2

Powered by WordPress & Theme by Anders Norén

Skip to toolbar