BioQuakes

AP Biology class blog for discussing current research in Biology

Author: rheaction

The Gene Switch

Researchers at the Stowers Institute for Medical Research have created a high-resolution mechanism to “precisely and reliably map individual transcription factor binding sites in the genome.” This new technique, published in Nature Biology today, has proven to be more efficient and successful than those previously studied.

All of the cells in an organism carry DNA; however different cells in the body express different portions of it to function properly. For instance, nerve cells express genes that facilitate them carrying messages to other nerve cells. This process is known as gene expression and is responsible for making our bodies function the way we do. Despite our limited knowledge on gene expression, researchers are aware that it is is controlled by proteins called transcription factors that bind to specific sites around a gene and,  in the right order, allow the gene’s sequence to be read.

Transcription factor binding sites in DNA are extremely difficult to locate but, thanks to new technology, it is becoming easier to track their location. “The transcription factor binding sites that are likely functional leave behind clear footprints, indicating that transcription factors consistently land on very specific sequences. In contrast, questionable binding sites that were previously detected as bound showed a more scattered unspecific pattern that was no longer considered bound.”

These techniques are implemented through a method called chromatin immunoprecipitation or ChIP, a tool that determines the relativity of the proteins to their positions on the DNA, cuts the DNA into reasonable sizes, and then isolates the sections that are bound by the proteins. While the research is largely preliminary, scientist Zeitlinger attests to the significance of this creation; ”If we do this kind of analysis for lots of transcription factors, we will gather information needed to better understand gene expression.”

chIP

chIP mechanism

Do Viruses Make Us Smarter?

5284032560_4812d29f9f_o

Sanofi Pasteur

A study conducted at the Lund University shows that “inherited viruses” that are millions of years old play an important role in building up the complex networks that characterize the human brain.” It is well known that retroviruses are make up about five percent of our DNA. Research under Johan Jakobsson indicate that retroviruses may play a critical role in the basic functions of the brain, “in the regulation of which genes are to be expressed, and when.”

Studies of neural stem cells show that these cells use a particular molecular mechanism to control the activation processes of the retroviruses. Findings have shown to have increasingly gained control in our cellular machinery. Because tumors are unable to form in nerve cells, different from other teachers, viruses are activated specifically in the brain. The results open up potential for new research paths concerning brain diseases linked to genetic factors.

“I believe that this can lead to new, exciting studies on the diseases of the brain. Currently, when we look for genetic factors linked to various diseases, we usually look for the genes we are familiar with, which make up a mere two per cent of the genome. Now we are opening up the possibility of looking at a much larger part of the genetic material which was previously considered unimportant. The image of the brain becomes more complex, but the area in which to search for errors linked to diseases with a genetic component, such as neurodegenerative diseases, psychiatric illness and brain tumors, also increases”.

Original Article: http://www.biologynews.net/archives/2015/01/12/do_viruses_make_us_smarter.html

For More Info:

http://www.sciencedaily.com/releases/2015/01/150112093129.htm

Drinking Coffee May Have Health Benefits?

10145153253_13c81ec99a_o

Petr Kratochvil

A new study at the University of Georgia indicates that a chemical compound commonly found in coffee might prevent obesity-related disease. While previous studies show that coffee consumption can lower the risk of cardiovascular disease and Type 2 Diabetes, scientists have recently focused on chlorogenic acid, a compound also known to be in tomatoes, apples, blueberries, and pears.

The test consisted of a group of mice that were fed a high fat diet for 15 weeks while giving them CGA solution injections twice a week. Researchers found that the CGA shots helped the mice maintain normal blood sugar levels, a healthy liver composition, and prevent weight gain. It is important to note, however, that the mice received an extremely high dosage of CGA, much greater than what the average human would obtain by drinking coffee on a regular basis or eating a diet rich in fruits and vegetables.

For the past 20 years obesity has become an issue of increasing incidence in the US. Obesity often leads to two major side effects aside from weight gain: increased insulin resistance and fat buildup in the liver. In the paper published in Pharmaceutical Research, researchers write that the CGA, significantly reduced insulin resistance and accumulation of fat in the livers of mice. They plan to extend the project to develop CGA formulation for humans.

As the Liu Lab writes “CGA is a powerful antioxidant that reduces inflammation,” but they are not to quick to jump to conclusions. Scientists still believe that proper diet and regular exercise are the most effective ways to reduce obesity-related risks. That being said, I definitely think this makes us feel better about drinking coffee every morning.

Original Article:

http://www.sciencedaily.com/releases/2014/11/141114124907.htm

For More Info:

http://www.medicaldaily.com/antioxidant-coffee-might-lower-risk-weight-gain-obesity-related-diseases-310816

Artificial Sweeteners: Not So Sweet After All?

425555319_86d3866d4b_o

Amy van der Hiel

A recent study conducted at the Weizmann Science Institute suggests that artificial sweeteners may trigger health problems instead of benefiting people. This is important because not only is saccharin in artificial sweeteners, but it is also found in salad dressings, vitamins, and in low/zero calorie items we often eat.

Previously, sweeteners were known to pass through the gut undigested, therefore allowing people with health issues to use the sugar substitute. Recent tests on mice and humans found that saccharin actually interferes and alters microbiota bacteria found in the gut and small intestines, leading to serious conditions such as obesity and diabetes.

Mice were monitored for 11 consecutive weeks when given drinking water doped with saccharin and the results showed they had abnormally high levels of glucose in their bloodstream. When food is digested it is broken down into glucose, the most common carbohydrate, and then enters the bloodstream to either be used as fuel or stored. When glucose metabolism is blocked, the blood glucose level is high. The test was repeated with mice on high-fat diet and the results were the same, showing that the saccharin had the same effect irrespective of the animal’s weight. Four of seven humans that ate a high-saccharin diet were also found to have an impaired glucose metabolism.

Why the microbiota are affected is still unknown as the test is preliminary, but the conclusion has been made that certain saccharin sugar substitutes are not simply passing through the intestines.

Original Article: https://www.sciencenews.org/article/artificial-sweeteners-may-tip-scales-toward-metabolic-problems

Photo Credit: https://www.flickr.com/photos/amyvdh/425555319

More Links:

http://www.biologynews.net/archives/2014/09/17/gut_bacteria_artificial_sweeteners_and_glucose_intolerance.html

http://well.blogs.nytimes.com/2014/09/17/artificial-sweeteners-may-disrupt-bodys-blood-sugar-controls/

http://wis-wander.weizmann.ac.il/gut-bacteria-artificial-sweeteners-and-glucose-intolerance#.VB48n4ARD1h

Powered by WordPress & Theme by Anders Norén

Skip to toolbar