BioQuakes

AP Biology class blog for discussing current research in Biology

Author: anapaige

CRISPR Research into HIV Immunity Might Also Improve Human Cognition

In the quest to genetically master human immunity to HIV, Chinese CRISPR researchers may have come across a way to control human intelligence as well.

Specifically, the trial of deleting the CCR5 gene in twin girls Lulu and Nana has lead to a scarily powerful discovery that scientists are within reach of being able to genetically modify human brain function. Scientists were initially interested in deleting the CCR5 gene because it codes for a beta chemokine receptor membrane protein which the HIV virus hijacks to enter red blood cells. However, when this alteration was tested on mice embryos in California, the resulting offspring showed evidence of improved mental capacity.

https://pixabay.com/illustrations/dna-genetic-material-helix-proteins-3539309/

After this unexpected result, scientists investigated further how the alteration would impact human function with the twins’ lives in mind. Experiments yielded evidence of improved brain recovery after a stroke and potential greater learning capacity in school. Scientists at UCLA uncovered an alternative role for the CCR5 gene in memory and suppressing the formation of new connections in the brain. The absence of this gene in the human genome would likely make memory formation easier via more efficient neural connections.

Although the mice experiment suggested that CCR5’s deletion would improve mental capacity rather than harm it, scientists cannot be sure how the alteration has impacted Lulu’s and Nana’s cognitive function. Some also fear that this discovery may have been the first Chinese attempt to genetically create superior intelligence, despite their claim to the MIT Technology Review that the true purpose of the study was to investigate HIV immunity. Although the Hong Kong scientists who engineered the twins did not publicly intend to improve human cognition, they confirmed a familiarity with UCLA’s discovered connections between CCR5 and human cognition all throughout their trial.

Are we within reach of a time when we can play with the circuit board of the human genome to raise a person’s IQ? Quite possibly. But only time and research will tell.

A New Way to Study Sleep Disorders

https://www.goodfreephotos.com/vector-images/sleeping-kitty-vector-clipart.png.php

Whether you are an early bird or a night owl, all of your body’s processes are driven on the day- to- day cycle of your “body clock”, more scientifically known as your circadian rhythm. Regulating the activation of about 40 percent of our genes, the circadian rhythm orchestrates bodily patterns such as hunger, alertness, and body temperature that drive our daily activities to maintain homeostasis. Almost all of the human cellular processes are carefully harmonized in this way by a small portion of the brain called the suprachiasmatic nucleus, which controls levels of hormones that induce the sleep/wake cycle. Although necessary for our survival, this sequence of hormones can considerable trouble when that clock does not coincide with the clock on the wall, often resulting in sleep disorders.

Recent studies have led scientists towards much more efficient methods to test for and understand the circadian rhythms of those with sleep disorders. In the past, an extensive exam would require numerous blood and saliva samples taken over the course of several hours in low- light conditions. However, more recent studies have settled upon a much simpler test for biological time that can be integrated into routine checkups.

The new approach measures cyclic fluctuations in RNA levels in the blood that would indicate circadian activation of genes. Specifically, the test analyzes monocytes, a specific type of white blood cell that displays a strong circadian cycle in its abundance in the bloodstream. By analyzing the oscillations of a patient’s monocyte levels doctors can more easily identify where and how their circadian rhythm is irregular, and consequently come to more effective treatment.

Hopefully this more common method of detecting circadian irregularities can lead to development in treatment for sleep disorders as well as approaching more common sleep issues such as jet lag.

Could Hygiene Be Making Us Sick?

In today’s world, people are more cautious than ever about cleanliness and hygiene. One would be hard- pressed to walk into an elementary school where hand sanitizer lined the halls and a plethora of foods weren’t avoided. It seems as if the parenting goal of the 21st century is to sterilize every surface that their child tries to touch. But could this shelter of cleanliness actually be making these children more susceptible to illness?

https://commons.wikimedia.org/wiki/File:Nut_warning_1.jpg

 

The National Microbiome Initiative has reason to believe so. Via attentive study of the diversity of bacteria that call the human body home, scientists have determined that sterilizing the world of a young child may inhibit the development of his or her microbiome and consequent immune abilities. Scientists have determined that proper exposure to “dirt” plays a vital part in “training” the immune response to bodily intruders. Although a human’s bacterial microbiome is mostly formed within the first 100 days of life, continued exposure to foreign substances is vital for its proper development. Whether it be a strain of bacteria, a peanut, or a certain animal, when children aren’t exposed to the full range of microbes that the world has to offer they develop with a lower capability to manage them.

Since this generation of children are growing up in an increasingly sterile world, it is intuitive that the prevalence of allergies has skyrocketed. In a 2016 study at the University of California San Francisco, researchers found that one- month old children who lacked particular gut microbes were three times as likely to develop an allergy by age two. Their immune response is not properly trained to distinguish between what belongs in the human body and what is an intruder, and thus is more likely to mistake something as banine as a peanut or gluten for an intruder.

Although pediatric hygiene is important, maybe it’s time for parents to stop putting a Clorox wipe to every surface their children touch. Who knows? A tumble in the playground dirt may help develop a toddler’s microbiome and not just scuff up their jeans.

A Gene In Your Ears For Sour Taste?

Unlike the other four human tastes, our process of detecting sourness has always been a mystery, and scientists were definitely not expecting to find the answer in a  protein normally found in the inner ear.

https://pxhere.com/en/photo/994259

This protein, coded by the gene scientists refer to as Otop1, usually functions as part of the vestibular system to maintain balance. Given this more commonly known function of the protein, scientists were shocked to find its use for both balance and detecting the acids often associated with sour taste. The association is actually not as far- fetched as one might think. Otop1 codes for the synthesis of calcium carbonate crystals which rest on the hairs of the inner ear and detect gravity to help humans stand upright. Researchers found that the tongue also uses these crystals to detect sour taste. Calcium carbonate, a relatively basic compound, dissolves when it comes into contact with acid, which reaction can be detected by the brain and interpreted as sour taste.

How could such a protein find its way to use in both our senses of balance and taste?

The answer lies in evolution. If a certain protein proves advantageous over generations, organisms with it in surplus may evolutionarily find other uses for the it. Recently scientists have actually found several proteins for sensory organs that double as homeostatic sensors in other tissues. Otop1 is only one of many; smell receptors are found in the kidney in surplus, as are sweet taste receptors in the bladder.

Although we have unearthed a lot about the human body over the years, there is always so much more to learn!

Powered by WordPress & Theme by Anders Norén

Skip to toolbar