BioQuakes

AP Biology class blog for discussing current research in Biology

Author: agman

HIV > CRISPR-Cas 9

https://commons.wikimedia.org/wiki/Category:HIV#/media/File:HIV-infected_H9_T_Cell_(6813314147).jpg

HIV Infecting a Cell

CRISPR-Cas 9 is an extremely advanced gene editing tool. This tool has efficiently created ways to make precise and targeted changes to the genome of living cells. However, in a study in the journal Cell Reports, scientists from the McGill University AIDS Center in Canada discovered drawbacks in using CRISPR to treat HIV. Instead of simply removing the virus from affected cells, the process of using CRISPR can also strengthen the infection by causing it to replicate at a much faster rate.

HIV has always been a popular disease to conduct research on. Scientists are constantly attempting to come up with ways to kill HIV. Several cures to HIV have been developed such as various as antiretroviral drugs, however, these medicines stop being effective after the patient has ceased to take them. As scientists have started to utilize gene editing tools to remove HIV they have been noticing the huge drawback. They realize that while the gene alteration allows the virus to be killed off in some cases, the resulting scar tissue can lead to the infection becoming stronger! Kamel Khalili, a scientist at Temple University, pointed out that the key to eliminating HIV could lie in attacking the virus at different sites using CRISPR.

Link to Original Study

Link to Original Article 

Link to Original Photo

We Eat What We Are: The Importance of Microbes in Our Gut

Unknown

Photo of microbes (licensing information here)

Ever since the discovery of the microbes, scientists have become very aware of the miniature world of microbes. This early awareness was later translated to an understating of how bacteria and other microbes effect the world we live in. Of course, early scientific and medical research often focused on microbes that cause diseases and how to treat them. However scientists have become aware that each individual is in fact a biome of microbes living on our exterior and inhabiting our interior organs.  Bacteria also play an important role in digestion helping us break down certain foods, producing vitamin and allowing for efficient absorption of nutrients. Increasingly, investigators have began exploring how the micro biome in our digestive track impacts our health and wellbeing.

Gut bacteria appear to play a role in matters of obesity, the development of certain types of cancer and ulcers. They do so by producing certain chemicals that affect a variety of health outcomes. Gut bacteria also produce a wide variety of neurology related chemicals that affect mental processes such as depression and anxiety disorders. Some studies now point to a relationship between autism and particular levels of gut bacteria.

The recognition of the importance of gut bacteria in health and disease have implications in a number of areas. First of all it suggests that a healthy diet should involve the encouragement of the development of good gut bacteria. It also suggests that gut bacteria diversity is a positive goal. Lastly, the results of many of these studies of the significance of gut bacteria in regard to disease point to the need to incorporate the study of an individuals gut bacteria as part of the treatment regiment to fight particular illnesses

 

 

From Beef to Blood to Breast Cancer: Bovine Leukemia Virus

Scientists have studied Bovine Leukemia Virus, informally known as BLV for quite a while. Investigators have studied the cellular structure of the virus, the hypothetical vaccine and the correlation with cow’s milk. However, recently a study done by researchers at the University of California Berkeley concludes that there is a link between the infection (BLV) and human breast cancer.

In a study published in PLOS ONE,the investigators take note of all of the potential causes of breast cancer. They extrapolate that the key reasons behind breast cancer are age, reproductive history, hormones and genetics. The researchers additionally detected that the Bovine Leukemia Virus was in the breast epithelium of humans. The objective of this experiment was to determine whether the presence of BLV DNA in human mammary epithelium is associated with breast cancer.

The researchers conducted a case study in which archival formalin-fixed paraffin embedded breast tissue was injected in the control group (women without history of breast cancer) and the experimental group (women with a history of breast cancer.) The rate of occurrence of BLV DNA from women with breast cancer was 59%, while the rate in the control group was a diminutive 29%.

This experiment has helped researchers conclude that the presence of amplified BLV DNA is significantly correlated with female breast cancer. The findings in this experiment and ones similar to it assist in conceptualizing a potential primary and secondary breast cancer prevention tactic.

Humans get BLV from cows!

Humans get BLV from cows!

Powered by WordPress & Theme by Anders Norén

Skip to toolbar