“Synthetic microbiome? Genetic engineering allows different species of bacteria to communicate”

Before seeking to analyze how genetic engineering enables the alteration of the microbiome, it is essential to understand the nature of the microbiome. Humans’ microbiomes consist of “trillions of microorganisms (also called microbiota or microbes) of thousands of different species.” Initially, peoples’ microbiomes are solely determined by their DNA; however, as time goes on, a person’s microbiome can be shaped by other factors, including the environment in which they live, or their diet. The microbiome contains both helpful and deleterious microbes, but “In a healthy body, pathogenic and symbiotic microbiata coexist without problem.”

According to researchers from the Wyss Institute at Harvard University, Harvard Medical School (HMS), and Brigham and Women’s Hospital, it may now be possible to create a “synthetic microbiome.” The team did a study in which they utilized a particular type of quorum sensing known as acyl-homoserine lactone sensing. Quorum sensing allows bacteria to regulate the expression of genes and to detect the size of bacterial colonies, through signal molecules. First, the team inserted “two new genetic circuits into different colonies of a strain of E. coli bacteria.” One of the circuits acted as a “signaler” and the other acted as a “responder.”

File:E. coli Bacteria (16578744517).jpg Picture of E. Coli bacteria

In short, the team inserted a single copy of luxl, a gene activated by the molecule anhydrotetracycline (ATC), into the signaling circuit. The signaling molecule formed by this gene then binded to the receptor circuit, which activated another gene, known as cro. The cro gene creates Cro proteins, and these proteins triggered a “memory element” within the responder circuit, in which two more genes, LacZ and another cro, were produced. If the signaling molecule is received (which it was), the presence of LacZ causes the bacterium to turn blue. Most importantly, the additional cro gene essentially keeps the “memory element” on, so this cycle continues.

To make sure that this system works in living organisms, the researchers tested it in mice. Signs of signal transmission in the mouse’s gut between the signaler S. Typhimurium bacteria and E. coli responder bacteria were detected. In other words, the engineered circuits allowed the bacteria to communicate with one another.

While these findings are extremely exciting, scientists have yet to discover whether or not other genetically engineered species of bacteria will also be able to facilitate communication between molecules. A Founding Core Faculty member of the Wyss Institute said that “[They] aim to create a synthetic microbiome with completely or mostly engineered bacteria species in our gut, each of which has a specialized function.” If this is achieved, we will move one step closer to becoming super humans!

Feature Image: “Free for Commercial Use” and “No attribution required”

Print Friendly, PDF & Email