BioQuakes

AP Biology class blog for discussing current research in Biology

A Breath of Fresh Air: Epigenetic Studies Help Asthmatics

Asthma and allergies affect many people worldwide. Up until recently, treatments for both asthma and allergies were administered without an appropriate prediction of responses; However, this is about to change. In a recent study conducted by scientists at Imperial College London, “30 new genes that predispose people to allergies and asthma” were found. The discovery of these genes means that new treatments for allergies are possible and more accurate predictions for current treatment responses will be available.

Photo by Author

Photo by Author

By observing the epigenetic changes, ones that influence gene activity- not genetic code, the scientists were able to identify genes which are linked to triggering allergic responses. Such genes regulate specific antibodies. Genes become inactive through methylation: the attachment of methyl molecules to DNA. The scientists studied white blood cells of families with asthma to see if methylation levels in specific genomic locations were associated with levels of an antibody in the blood. Immunoglobin E (IgE) is the antibody studied in the case. The antibody IgE was known prior to this study, but the genes which activities it regulates were not. After monitoring the IgE levels in the blood, researchers saw a strong correlation between IgE and low methylation at 36 places in 34 genes. These genes are overstimulated in asthmatics, thus the production of IgE is increased, contributing to asthma symptoms. In expanding the investigation, researchers came to believe that IgE-involved genes may activate eosinophils, a type of white blood cell which in asthmatics promotes airway inflammation by gathering and releasing chemicals in airways/lungs. Researchers believed that these genes, and their ability to activate eosinophils, then cause the most damage. In order to test this, researchers isolated eosinophils from the blood of subjects and demonstrated that all 34 genes have high activity levels in asthmatics with high IgE levels. Thanks to the findings of new activation signals, patients can avoid high costs and ineffective “treatment-trials” because we’ll be able to predict responses to treatments with more accuracy. Professors Cookson and Moffatt, the leaders of the investigation, give credit to epigenetics for allowing them to make a breakthrough in discovering new potential drug targets for allergies and asthma and sharpening the accuracy of treatment-response predictions. Professor Cookson explained that, “the genetic code that can influence disease and DNA sequencing can only take you so far. Our study shows that modifications on top of the DNA that control how genes are read may be even more important.”

As someone who suffers from allergic asthma, I find it intriguing how the disease-triggering genes aren’t inactive, thus leading to poor lung function, but rather they are overstimulated. Our genes’ ability to regulate disease-triggering antibody activity is amazing. With new studies like this one, we can see that the solution to proper activity regulation is in epigenetic changes, rather than the broad expectations of “our genes”.  This just goes to show that epigenetics is helping us make strides in the ever-changing world of medicine. It should be interesting to see how epigenetic medical-solutions, the current gold mine of Biological research, evolve in the near future.

 

Print Friendly, PDF & Email

Previous

Does the aging process influence changes on a cellular level or do changes on a cellular level influence the aging process?

Next

Epigenetic breakthrough: A first of its kind tool to study the histone code

1 Comment

  1. Antibody

    I never thought the breath of fresh air could be helpful in asthmatics. Nice!
    -Creative Biolabs

Leave a Reply

Powered by WordPress & Theme by Anders Norén

Skip to toolbar