BioQuakes

AP Biology class blog for discussing current research in Biology

Changing a baby’s DNA profile by physical contact?

Photograph by Vera Kratochvil, License: CC0 Public Domain

Recent research from the University of British Columbia and BC Children’s Hospital Research Institute proved that the amount of physical contact between infants and their caregivers can affect children at the molecular level. The study demonstrated that children who had been more distressed as infants and received less physical contact had an underdeveloped molecular profile for their age. This is the first study to show that the simple act of physical touching on human children can result in deeply-rooted changes in genetic expression.

The researchers measured a biochemical modification called DNA methylation in which parts of the chromosome are tagged with small molecules made of carbon and hydrogen. These molecules act as “dimmer switches” that help control how active each gene is and affect how cells function. The extent of methylation and where on the DNA it takes place can be impacted by external conditions, especially in childhood.

The team analyzed DNA methylation of 94 healthy children with records of received caregiving from the age of five weeks to four and a half years. The DNA methylation patterns the scientists gathered presented consistent differences between high-contact and low-contact children at five specific DNA sites. Two of the five sites are related to genes: one involves in the immune system, and the other in metabolism. The children who experienced higher distress and received little contact had a lower “epigenetic age” than what’s expected from their age. Such low epigenetic age is conceived as an underdevelopment of the child’s molecular profile. As medical genetics professor Michael Kobor said, “In children, we think slower epigenetic aging might indicate an inability to thrive.”

The researchers intend to further examine whether the “biological immaturity” – epigenetic changes resulted from low physical contact – carries broader implications for children’s health, especially their psychological development. According to the lead author Sarah Moore, “If further research confirms this initial finding, it will underscore the importance of providing physical contact, especially for distressed infants.”

You’re a Jerk!!!

Have you ever woken up in the middle of the night because you felt like you were falling?? What about waking up from sudden muscle spasms you’ve experienced in your sleep?? If you answered yes to either or both questions, that means you’ve experienced a hypnagogic jerk!

A term referencing to the period between wakefulness and sleep, called the hypnagogic state, hypnagogic jerks are involuntary muscle spasms that occur during light sleeping. These jerks are also known as ‘sleep starts’ and effect 70% of the population. Some factors scientists know to cause and increase the amount of twitches one can experience are high caffeine intake, stress, fatigue, anxiety, sleep deprivation, and intense activity and exercise right before sleep. Additionally, it is surmised that these spasms can also be induced by sound, light, and other external factors.

In a recent study, different people have reported that with these jerks comes hallucinations, vivid dreams, or even ringing noises inside of their heads! Though, with the acknowledgement of hypnagogic jerks and what comes with them, the actual main cause in the body is unknown. Here are two popular theories from the researches:

  1. The first idea is that the jerks are just natural when transitioning from alertness to sleep by nerves in the body ‘misfiring’.
  2. The second idea is that hypnagogic jerks result from evolution. It’s argued that the spasms are a primitive reflex where the brain at one time in history misinterpreted the transition from movement to relaxation and sleep as a sign of the primate falling, making the muscles quickly react.

Even with those two theories the actual cause is still a mystery and scientists continue to try and find it. Though don’t be scared if you experience a hypnagogic jerk once in a while that causes you to wake up, but if this starts to happen on a more frequent and repetitive basis seek a sleep specialist!

Feel free to comment your experiences with hypnagogic jerks!!

Original Source: https://www.livescience.com/39225-why-people-twitch-falling-asleep.html

Advanced new understanding of lung abnormality… thank you turtles!

A recent study of an unusual snapping turtle with one lung was found to share similar characteristics to humans born with one lung who survive infancy. “These shared traits include an enlarged single lung with a more homogenous distribution of respiratory parenchyma(the gas exchanging tissues), an opposing bronchus that ends where the opposite lung should be and malformations of the spine (such as scoliosis),” said Dr. Schnacher an Assistant Professor of cell biology at Louisiana State University. This study is important because there is very little known about lung morphogenesis.But we do knowthat mutations in genes cause severe, even lethal, lung malformations and lung formation. It is possible that similar genetic mutations are at play in both the turtle and in humans! What an interesting parallel!

 

 

 

 

 

The snapping turtle was found in Minnesota and brought to a wildlife rehabilitation center because of a deformity on its shell. However, it wasn’t long until the turtle’s second abnormality was discovered, its singular lung. The turtle was passed down to the hands of Dr. Schnacherand it went through computed tomography(CT) and microCT imaging. The images created 3D models of the area. For comparison, images of a normal turtle specimen were also taken. The comparison was conducted to observe the negative spaces within the lungs– the bronchial tree, lung skeleton, and lung surface. The architecture of the spaces and the patterns inside the lung were compared to the “normal” turtle. In addition, these models also facilitate a visual of specific structures that are very difficult to see in living animals, such as blood vessels and air spaces. What is so innovative about this technology is that qualitative and quantitative comparisons can be made between organisms with absolutely no harm to the specimens! For animal lovers like me this is a huge breakthrough.

So, what was the big reveal? The primary difference between the turtle with one lung and the normal turtle was that the normal turtle had an larger surface area and density value in regard to its gas exchanging tissue. The tissue originates from the secondary airways, thus the 14.3% increase is very signifigant. However, this abnormality had no effect on the turtles survival rate, it only effected aquatic locomotion and buoyancy control. How does this relate to humans now? The turtle represents an example of a non-fatal congenital defect and a clear pathway of how the turtle adapted to compensate for it. This increased understanding of soft tissue structures reveals key breakthroughs to one day understand and improve diagnoses in humans! I think the future holds big answers, what do you think?

 

Discovery in Worms Could Save Human Lives in the Future

A germline is the ancestry of one generation of cells to the next ones. But, scientists for a long time did not know how this has not been destroyed. Over time cell’s proteins become deformed and clump together, and this damage gets passed down to the next generation. So, in theory the germline should have already been destroyed, but it is still producing new and healthy life to this day. The question is: how?

Scientists have recently found the answer to this through studying a tiny worm called Caenorhabditis elegans. Similar to humans, these worms rely on certain genes to control their cellular division. In fact, they have a gene called daf-2 which has the ability to more than double their lifespan. After seeing this gene, scientists have realized that there are genes that are involved in repairing cells so that they do not become deformed or clumped.

Photo Source

Caenorhabditis elegans are hermaphrodites where once eggs are mature they travel to the sperm. But, the eggs have a lot of damaged proteins, only not the ones near the sperm. This led scientists to hypothesize that the sperm send out a signal to tell the egg to get rid of its damaged proteins. This signal triggers the lysosomes in the egg cells to become acidic and break down the clumps.

Even though this discovery was found on worms it could have seriously beneficial implications for humans. Stem cells also use lysosomes to get rid of damaged proteins. So this discovery could lead into learning how to treat diseases, such as Alzheimer’s Disease, to clean their aging tissue. A discovery found by studying tiny worms could lead to the answer to how to cure diseases that come with old age.

Bacteria may be more complex than we think

Photo by Wikimedia Commons

A common public misconception is that bacteria live alone and act as solitary organisms. This misconception, however, is far from reality.

Bacteria always live in very dense communities. Most bacteria prefer to live in a biofilm, a name for a group of organisms that stick together on a surface in an aqueous environment. The cells that stick together form an extracellular matrix which provides structural and biochemical support to the surrounding cells. In these biofilms, bacteria increase efficiency by dividing labor. The exterior cells in the biofilm defend the group from threats while the interior cells produce food for the rest.

While it has long been known that bacteria can communicate through the group with chemical signals, also known as quorum sensing, new studies show that bacteria can also communicate with one another electrically. Ned Wingreen, a biophysicist at Princeton describes the significance of the discovery; “I think these are arguably the most important developments in microbiology in the last couple years, We’re learning about an entirely new mode of communication.”

An entirely new mode of communication it is! Heres how it works:

Ion channels in a bacteria cell’s outer membrane allow electrically charged molecules to pass in and out, just like a neuron or nerve cell. Neurons pump out Sodium ions and let in Potassium ions until the threshold is reached and depolarization occurs. This is known as an action potential. Gurol Suel, a biophysicist at UCSD emphasizes that while the bacteria’s electrical impulse is similar to a neuron’s, it is much slower, a few millimeters per hour compared to a neuron’s 100 meters per second.

Photo by Chris 73 Wikimedia Commons

So what does this research mean?

Scientists agree that this revelation could open new doors to discovery. Suel says that electrical signaling has been shown to be stronger than traditional chemical signaling. In his research, Suel found that potassium signals could travel at constant strength for 1000 times the width of a bacteria cell, much longer and stronger than any chemical signal. Electrical signaling could also mean more communication between different bacteria. Traditional chemical signaling relies on receptors to receive messages, while bacteria, plant cells, and animal neurons all use potassium to send and receive signals. If these findings are correct, there’s potential in the future for the development of new antibiotics.

Learning about electrical signaling in bacteria has complicated our understanding of these previously thought to be simple organisms. El Naggar, another biophysicist at USC says, “Now we’re thinking of [bacteria] as masters of manipulating electrons and ions in their environment. It’s a very, very far cry from the way we thought of them as very simplistic organisms.”

 

 

New Developments in the Biology of Alzheimer’s Disease

Recent work by Boston University School of Medicine researchers shows developments in a new model for the biology of Alzheimer’s disease, which could lead to entirely new approaches in treating the disease. Alzheimer’s disease disrupts one’s cognitive abilities, including memory, thinking, and behavior. It accounts for 60-80% of all dementia cases. The neurodegenerative disease is caused by clumps and accumulations of 2 proteins –beta-amyloid and tau– which cause nerve cell injury and in turn, dementia.

Comparison of a normal brain (left) and the brain of a person diagnosed with Alzheimer’s (right).

Recent work by the BUSM researchers has shown that the clumping and accumulation of the tau protein are largely due to stress. The accumulation of tau produces “stress granules” (RNA/protein complexes). The brain responds to these stress granules by producing important protective proteins. However, with excessive stress, there is a greater accumulation of stress granules, which in turn leads to greater accumulation of clumped tau, which causes nerve cell injury. In this study, researchers are using this model to show that reducing the level of stress granules could lead to improved nerve cell health. It may be possible to reduce the level of stress granules by genetically decreasing TIA1, a protein required for stress granule formation.

In an experimental model of Alzheimer’s disease, the research team found that reducing the TIA1 protein led to striking improvements in memory and life expectancy. However, although stress granule levels decreased (leading to better protection), the team observed that the clumps of tau became larger. The researchers further looked at the tau pathology and found that the while small clumps of tau (known as tau oligomers) are toxic, larger tau clumps are generally less toxic. According to pharmacology and experimental therapeutics professor Benjamin Wolozin, this discovery would explain why the experimental models experienced better memory and longer life expectancy. The implications and ability of TIA1 protein reduction in order to provide protection may lead to further novel developments in the biology and treatment of Alzheimer’s disease.

Source: https://www.sciencedaily.com/releases/2017/11/171120111319.htm

Engineering Cancer Killers!

https://commons.wikimedia.org/wiki/User:ArturoJuárezFlores

Engineering Cancer Killers!                                                                                               

Today, millions of people are dying from the complex disease, cancer. Although treatments such as chemotherapy and radiation are used to cure the disease, immunotherapy has emerged as a potential cure for cancer. Professor Oliver Ottmann, Head of Haematology at Cardiff University and co-lead of the Cardiff Experimental Cancer Medicine Centre (ECMC), acknowledged the importance of immunotherapy and considers it a huge breakthrough in cancer research and treatment. This lead his team to further discover the key to genetically engineering T-cells to recognize and kill cancer cells. 

How Does It Work?

T-cells are an important part of our immune systems. They contain receptors that can recognize bacterial infections or viruses and help fight them off, and potentially kill cancer cells. Scientists have developed a way to genetically engineer T-cells using CRISPR genome editing. Normally, the genetically engineered T-cells, that are created to fight cancer, contain two types of receptors. One type is called therapeutic, and is created and added on to the cell in a lab, and the other types of receptors are natural and originated from the T-cell.

The Problem 

The team acknowledged that since both kinds of receptors occupy the cell, there is minimal space for all receptors to fit on the cell; therefore certain receptors must challenge other receptors in order to perform their own function. Since there are more natural receptors on a T-cell than the therapeutic receptors,the natural receptors perform superior than the therapeutic receptors. This means the genetically engineered T-cells are not able to work at their full potential; they are unable to kill cancer cells efficiently.

The Solution

After recognizing the problem, Professor Oliver Ottmann and his team genetically engineered T-cells, by genome editing, that only contain the therapeutic receptors they intended on adding. By eliminating all of the natural receptors that T-cells normally have, the therapeutic receptors will increase in efficiency.

The Future

Since scientists have figured out a way to maximize the efficiency of genetically engineered cancer fighting T-cells, finding a cure to cancer could be closer than we thought. Could this cutting edge research be the start of a solution for cancer treatment?  Do you think scientists and society will pursue this theory? This article sparked my interest because finding a reliable cure for cancer has been a problem for many years, every discovery we make brings us closer to finding the best cure.

Build A Baby?!

Have you ever wanted a baby to be a super fast swimmer like Michael Phelps? How about a child who has more talent than Mozart? Well, that can’t happen.

According to the  New York Times Article, Scientists in Oregon have successfully modified the DNA of human embryos. This led to the new hope that designer babies are in our near future. But, designer babies are more likely to be seen in movies than in reality.

The main reason why designer babies are unlikely is because great vocals and amazing coordination does not come from a single gene mutation, or even from an easily identifiable number of genes.

Hank Greely, director of the Center for Law and the Biosciences at Stanford, said,“Right now, we know nothing about genetic enhancement,”. “We’re never going to be able to say, honestly, ‘This embryo looks like a 1550 on the two-part SAT.’”File:Baby Face.JPG

Physical traits, like height or arm length, will also be difficult to genetically manipulate. Some scientists estimate height is influenced by as many as 93,000 genetic variations. A recent study identified 697 of them.

Talents and traits aren’t the only thing that are genetically complex. So are most physical diseases and psychiatric disorders. The genetic message is not a picture book ,but it actually resembles a shelf full of books with chapters, subsections and footnotes.So talents, traits and most medical conditions are out of the equation.

But about 10,000 medical conditions are linked to specific mutations, including Huntington’s disease, cancers caused by BRCA genes, Tay-Sachs disease, cystic fibrosis, sickle cell anemia, and some cases of early-onset Alzheimer’s. Repairing the responsible mutations in theory could eradicate these diseases from the so-called germline, the genetic material passed from one generation to the next. No future family members would inherit them.

Although this is challenging, it is proven to be more possible for scientists to alter the genes that lead to genetic diseases.

Last but not least, it is illegal.
There are debates regarding ethics and “playing God”. “I’m totally against,” said Dr. Belmonte. “The possibility of moving forward not to create or prevent disease but rather to perform gene enhancement in humans.”

Other people are scared of a super children takeover.

“Allowing any form of human germline modification leaves the way open for all kinds — especially when fertility clinics start offering ‘genetic upgrades’ to those able to afford them,” Marcy Darnovsky, executive director of the Center for Genetics and Society, said in a statement. “ We could all too easily find ourselves in a world where some people’s children are considered biologically superior to the rest of us.”

In summary, genetic modification for babies will only be used in dire cases. Therefore, the only way I can have a red head child who can play the piano and the flute simultaneously with their feet is through Sims 4.

Sleep In for Heart Surgery!

Now if you’re on the operating table, likely passed out and opened up, its a fair bet that what time of day it is will have absolutely no importance to you. But maybe it should.

Recently, a study spanning over 6 years and conducted on over 600 patients, was based on recovering from heart surgery had noticed a strong correlation with time of day and rate/outcome of recovery.

These patients who underwent a heart valve replacement had shown an interesting relationship with a humans circadian rhythm. Those who underwent surgery in the afternoon had much better results and recovery than those in the morning. Additionally, in the following 500 days after the surgery, patients who were operated on during the afternoon were half as likely to have a major cardiac event such as myocardial infarction (commonly known as a heart attack) or acute heart failure.

The team conducted a second study in which a total of 88 random patients were put into two groups, morning and afternoon. The results showed that those in the afternoon had lower levels of myocardial ischemia.

In a further examination of these findings in an attempt to find a cause, an article from Scientific American states, “The researchers isolated heart tissue samples from a subgroup of 30 patients from the randomized controlled trial. In laboratory tests, tissue from afternoon surgeries more quickly regained its ability to contract when researchers imitated the process of the heart refilling with blood as surgery concludes.”

While operating in the afternoon may have its benefits, doctors say that altogether abandoning surgery in the morning is simply out of the question. However, other practical applications of this are being studied, such as how it may affect cancer treatment in patients and whether or not circadian rhythm affects a variety of medical procedures. But until then, let the anesthesia kick in and enjoy the operation.

What do you think will be the next application of circadian rhythm or other anatomical and biological features?

Want to find out more? Sources below.

http://www.telegraph.co.uk/science/2017/10/26/surgery-safer-afternoon-bodys-circadian-rhythm-study-suggests/

https://www.scientificamerican.com/article/why-heart-surgery-may-be-better-in-the-afternoon/

http://www.independent.co.uk/news/science/heart-surgery-afternoon-morning-safety-post-illness-recovery-circadian-rhythm-body-clock-a8023736.html

Australian and PNG doctors and nurses performing surgery in Operation Open Heart. Port Moresby General Hospital, Papua New Guinea. Picture by Rocky Roe/AusAID

Beetle and Bacteria are Best of Friends

The thistle tortoise beetle, a type of insect native to Eurasia, has, astonishingly, the ability to break down pectin.  Pectin is a polysaccharide that makes up plant cell walls that is undigestable to most animals due to its structure.  The tortoise beetle, a leaf-eater, has developed a symbiotic relationship with a certain bacteria that can break down pectin, allowing the leaf-munching insects to chow away.

Thistle Tortoise Beetle

Hassan Salem, the lead author of the study, became interested in how the small insects had the ability to gain nutrients from plant cell walls.  Salem looked in the gut of the beetle and noticed a certain bacteria with the genes to create enzymes that allow pectin and other tough molecules to be broken down in the beetle, where the beetle’s digestive tract can then absorb the nutrients.  What makes the bacteria interesting is that it contains significantly fewer DNA base pairs in its genome.  A typical bacteria has millions of DNA base pairs while this bacteria only has around 270,000 DNA base pairs.

Thistle Tortoise Beetle on a leaf

The bacteria has developed such an advantageous symbiotic relationship with the thistle tortoise beetle that it doesn’t require an abundance of DNA base pairs.  The strain of bacterium is more similar to that of “intracellular bacteria and organelles than to free-living bacteria” (Clark).  The bacteria is so important to the survival of the beetle that female beetles insert a portion of their own bacteria into each egg so that the unhatched insects can create their own colonies.  Salem named the bacteria Candidatus Stammera capleta.

Forever Young?

Humans have been trying to solve the question of immortality for hundreds of years. What if the answer to this age old question was right in front of our eyes.

As cells age their proteins become deformed and clump together. They then pass those deformities down to their offspring. Wouldn’t it make sense that this linage, the germline, would eventually become too damaged to produce healthy new life. The resilience of the germline is a phenomena that has puzzled scientists for over 130 years. Humans spend decades aging only to produce offspring that are essentially “brand new”.

Scientists Dr. Bohnert and Cynthia Kenyon turned to studying a tiny worm called Caenorhabditis elegans to determine one way the germline stays young. Right before an egg is fertilized it is swept clean of its deformed proteins. They used Caenorhabditis elegans because they use many of the same genes that humans do for cell division and destruction of faulty cells. Most C. elegans are hermaphrodites, producing both eggs and sperm. They eggs travel down a tube, at the end of which they encounter the sperm.

The researchers found that normally the worm’s egg cells carried a surprisingly high number of damaged proteins, but in the eggs near the sperm there was far less damage. They then ran the same experiment with one difference; the women could not produce sperm. The results were that the egg cells throughout the tube were filled with damaged proteins. More experiments were done using a special strain of worms in which clumping proteins glowed. In every experiment the protein clumps disappeared within the eggs once they were near sperm.

Dr. Kenyon and Dr. Bohnert put together a chain of events of how these eggs rejuvenated themselves. It begins with a chemical signal released by the sperm that begins drastic change in the egg. The protein clumps come in contact with lysosomes which have become acidic due to the sperm’s chemical signals. The acidic environment is the perfect pH for enzymes within the lysosome to break down the clumped proteins. This process is done right before fertilization so that their offspring will not inherit the burden of damaged proteins.

It is very likely that the same strategy is used in humans as well as worms. Dr. Kenyon and Dr. Bohnert reported this model has recently been proven on frogs; a much closer relative to humans. This is the way that cells can guarantee a clean slate for their next generation.

What if fertilization wasn’t the only place this happened. What if stem cells use this process to eradicate damaged proteins. This research could have huge implications in treating diseases such as cancer by giving cells a signal to remove all the damage within then. Maybe this could be humanities key to unlock the secret of immortality by signaling cells to repair themselves.

The Human Brain vs. Chimpanzee Brains – The TH Gene

Well let’s start off with, what is the TH gene? The TH gene is a “protein encoded by this gene is involved in the conversion of tyrosine to dopamine. It is the rate-limiting enzyme in the synthesis of catecholamines, hence plays a key role in the physiology of adrenergic neurons.” How does this even relate to human and chimpanzee brains?

However, here’s a little background to the dimensions of the human brain compared to the chimpanzee brain. Modern humans share about 95% of their genetic code with chimpanzees.  Yet, human brains are three times larger, have many more cells, and would therefore have more processing power than a chimpanzee. Does this mean chimpanzees do not function as efficiently as the human brain or are there just some areas a human brain can be efficient on better as for the chimpanzee brain as well ?

According to two researchers from Yale University, Ying Zhu and André Sousa, TH was found highly expressed in human neocortex, but absent from chimpanzee neocortex. Sousa states, “The neocortical expression of this gene was most likely lost in a common ancestor and reappeared in the human lineage.” Since the gene is absent from the chimpanzee cortex, does this mean that they do not produce any dopamine? Do chimpanzees produce dopamine in a different way?

At the end of the day, we can conclude that human and chimpanzee brains do have a vast majority of similarities. Alternatively, there are certain aspects to the chimpanzee and human brain that allow us to differentiate the two and continue to allow for extensive research in such fields. I challenge you to discover something specific about the human brain and chimpanzee brain that are both extremely similar and different. What will you discover next?

Smile, it makes your dog happy!

Looking at your dog can bring a smile to your face, and looking at you can actually make your dog smile too!  A new study shows that dogs have an emotional response to our facial expressions; dogs like smiling faces, and don’t like angry faces. This is linked to the hormone oxytocin, which influences what and how a dog emotionally experiences what it sees. Oxytocin is a neurotransmitter, dubbed the “love hormone,” so an increase in oxytocin yields a positive reaction.

University of Helsinki researchers studied 43 domestic dogs. The dogs were presented with pictures of unfamiliar faces with happy or angry expressions. Each dog was tested twice; once under the influence of oxytocin, and once without oxytocin. The dogs reactions were determined by their gaze and pupil size, because emotions and attentiveness regulate these reactions (for more information on the relationship between pupil size and emotions, click here). According to the authors, “dogs typically focus on the most remarkable aspect of each situation, such as threatening stimuli in a frightening situation.” Therefore in the trial, dogs will focus on the most remarkable face, either the happy or angry one.

The dogs under the influence of oxytocin were more interested in the smiling faces, and the oxytocin influenced their emotional state, as indicated by their pupil size. They had a larger emotional response to smiling faces under oxytocin, because their pupils were wider. When the dogs weren’t under the influence of oxytocin, their pupils were wider when looking at angry faces, so they were more focused on and had a larger emotional response to the angry faces. The researchers concluded that oxytocin made the angry faces seem less threatening, and the happy faces seem more appealing. This is why the dogs focused on happy faces with oxytocin, and angry faces without oxytocin.

This photo is credited to Max Pixel.

To further the studies, the scientists said that more studies are needed to determine wether the results are only for domestic dogs or if the same reaction occurs with other animals. More studies should also be conducted on dogs with familiar faces, to see if familiarity would change the results of oxytocin on emotional face processing. They also added that in future studies, account of the dog breed, sex, and personality traits should be taken into account because oxytocin does not have uniform effects.

For more information, click here. For the research, click here.

Do Whales Exfoliate?

While trying to study bowhead whale’s feeding habits, Sarah Fortune was able to answers a questions that has been puzzling researchers for years: Why do bowhead whales continue to return to the Cumberland Sound in Canada and why are they constantly rubbing their bodies against rocks?

Well, it turns out they bowhead whales like to exfoliate and rub off dead layers of skin, just like us! Sarah Fortune made this discovery when a whale removed a transmitter, she had attached to track them, while rubbing against a rock. She noticed large pieces of skin coming off the whales’ backs and sides along with the transmitters.

 

https://commons.wikimedia.org/wiki/Balaena_mysticetus

 

Most whales are believed to shed skin and hair little by little throughout the year, like humans. However, some cold-water whale species are believed to shed as they migrate to warmer areas in the summer. Until Sarah Fortune’s study, very little was known about bowhead whales molting patterns. Although it was believed that they shed in the warmer months like belugas (a cold-water species). This latest discovery, of bowhead whales rubbing against rocks, will help confirm the belief that they shed seasonally. It also helps to explain why bowhead whales are willing swim into much shallower waters; they use rocky shores and big boulders there to exfoliate!

 

The Difference between You and a Chimpanzee!

The largest difference between you and a chimpanzee or a monkey can be found in the brain. Despite the fact that all regions of the human brain have very similar molecular signatures to your primate relatives, a new study has found that these regions contain distinct human patterns of gene activity that mark the brain’s evolution. This new study may contribute to our cognitive abilities.

Although human brains are three times larger and have many more cells and therefore more processing power than a chimpanzee, researchers, Zhu and Sousa, have found similarities between humans and our primate relatives in gene expressions in 16 regions of the brain.  A gene similarity was even found in the prefrontal cortex, a place where higher order learning takes place that most distinguishes humans from other apes. However researchers have also found that the striatum had the most human-specific gene expression, a region most commonly associated with movement.

A surprising difference was found in the cerebellum, one of the evolutionarily most ancient regions of the brain, and therefore most likely to share similarities across species. Researches found the gene ZP2, a gene active in only the human cerebellum, which is surprising considering the same gene has been linked to sperm selection by human ova. Zhu, a postdoctoral researcher, says that they, “have no idea what it is doing there.”

Researchers Zhu and Sousa have focused on one gene, TH, which is involved in the production of dopamine. TH is a neurotransmitter crucial to higher-order function and depleted in people living with Parkinson’s disease. They found that TH was highly expressed in human neocortex and striatum but absent from the neocortex of chimpanzees.

This research could be important in finding the cure to certain diseases like Parkinson’s disease. Also would be helpful in understanding how the human mind processes higher-order actions.

Need a Nap?

If you’re like me and enjoy soaking up the sun on a nice warm day, you may notice that after a little time in the sun… you’re ready for a nap! I sure know I am! I’ve always wondered why relaxing in the sun leads to feeling more exhausted than rejuvenated. Well here’s why!

Photo Taken by: Anthony Citrano www.zigzaglens.com (link to portfolio)

Our bodies are constantly working hard to maintain homeostasis, specifically temperature. On a warm day our bodies adjust to maintain this specific temperature. One way our bodies do this is through vasodilation. Vasodilation is the widening of blood vessels that result from the relaxation of muscular walls. This process allows for more blood to flow near the surface of your skin, allowing time for your blood to cool and release heat as it travels towards the skin’s surface. (If you ever find yourself over heated this increased blood flow near the skin explains why some people appear beet red when they’re hot)! Another way our bodies work to maintain homeostasis of body temperature is through sweat. When warm, our bodies secrete sweat onto our skin which then cools our skin as sweat evaporates!

But, in order for vasodilation and sweating to occur, our bodies have to do some work. Our heart and metabolic rates increase. It’s these occurrences that eventually lead to us feeling sleepy. Dehydration also plays a key role in fatigue. As your body secretes sweat, in attempts to cool down, you become more and more dehydrated.

Dehydration, when sun bathing, is also present if your skin gets burned or damaged. A sunburn is a sign that UV radiation has damaged the DNA in your skin cells. When you get sunburned, your body is constantly trying to repair the damage to those skin cells. One way the body attempts to repair the damage of a burn is diverting fluid from the rest of the body towards the burn leading to dehydration and therefore leading to fatigue.

In conclusion, as you soak up the rays wherever you may be, the best thing to do is to stay hydrated! Drink lots of non-diuretic beverages such as water and eat a salty snack! Non-diuretic beverages are those that keep you hydrated! Remaining hydrated will help somewhat with the fatigue you feel as you try and relax in the sun… what a paradox!!

Coffee: The Drink for a Healthier Life

Do you start every morning with a cup of coffee and continue drinking it throughout the day? If this is you, then coffee can be benefiting your health! According to a study conducted by the University of Southampton in the United Kingdom, drinking three to four cups of coffee a day can be very beneficial to one’s health. This study was published in the British Medical Journal in late November. For years, the verdict of whether coffee was either beneficial or harmful to one’s health constantly changes, but scientists currently say that drinking coffee is good for people.

To conduct this study, the group of scientists from the University of South Hampton reviewed more than 200 studies that also researched the effects of coffee on the human body. According to the review, those who drink coffee have a lower risk of liver disease, some cancers, and strokes. In a comparison of non-coffee drinkers and coffee drinkers, those who drink coffee also have a lower risk of dying from heart problems. Coffee was also found to be harmful for pregnant women and people with abnormal heart rhythms.

Professor Paul Roderick, a co-author to the study and a professor at the University of Southampton, suggested that coffee intake might not be why people have lower risks of certain diseases. This study does not take into consideration factors, including exercise, smoking, or diet. However, this study is backed up by other studies that also concluded that coffee has certain health benefits.

If you are a coffee-drinker, continue to drink coffee in moderation. Experts say that the best way to obtain these potential benefits is by drinking black coffee and avoid adding extra cream and sugar. It is interesting to learn how a popular drink can be helpful to one’s health. Now, coffee-drinkers will be happy to learn how their favorite morning drink can possibly be beneficial to their health in the long run! For more information on the newfound benefits of coffee, click here and here. Based on this research, do you think more people will start drinking coffee now?

Do you really want to eat Sharks?

In a recent study at the University of Miami, scientists found high concentrations of toxins in shark fins and cartilage. These toxins have been very closely linked to neurodegenerative diseases such as Alzheimer’s Disease or Amyotrophic Lateral Sclerosis (ALS). Therefore, the research team suggests that restriction for shark consumption will benefit the consumer’s health and for shark conservation.

Deborah Mash, Professor of Neurology and senior author of the study at the University of Miami, conducted a study to show the concentration of toxins found in a sample of sharks. Fins and muscle tissues were collected from 10 shark species found in the Atlantic and Pacific oceans. The samples were then found to have concentrations of two toxins, Mercury and β-N-methylamino-L-alanine (BMAA). Such toxins on their own pose a health risk, but together it can have a synergistic toxic impact.

Sharks have been known to live in the higher stages of the food web. Therefore, these water creatures have had a longer life span than other creatures in the water. As a result, sharks accumulate and concentrate toxins. This can be quite deadly for the human population as more and more people are in demand for shark parts.

In Asia and and globally in Asian communities, shark products have been used in many food selections. Shark fins, cartilage, and meat are used as a delicacy and as a source of traditional Chinese medicine. Therefore, 16% of the world’s shark species have been threatened with extinction.

“Our results suggest that humans who consume shark parts may be at a risk for developing neurological diseases.” said Mash. Limiting the consumption of sharks will provide health benefits and a positive conservation outcome for sharks.

So before you order the shark fin soup from the menu, think about how your health could be affected. Think about the endangered sharks in our oceans. Let’s do it for the sharks!

 

Killer Cells Caught Red-Handed!

Antibiotics are most commonly used to treat bacterial infections, but bacteria are rapidly able to evolve and resist these drugs, contributing to superbugs. Immune killer cells or white blood cells, however, are seemingly more effective at destroying bacteria cells. How do our immune cells fight bacteria so efficiently? What exact mechanisms do killer cells use to track and destroy bacteria and can we replicate those mechanisms with drugs?

Image result for white blood cells

White Blood Cell (farthest to right)

A common way immune cells can the trigger death of bacteria is by oxidizing the bacterial cells. However, immune cells are still able to destroy bacteria in environments without oxygen leading scientists to believe other methods are also used in attacking bacteria.

Scientists have recently discovered that immune cells methodically kill cells without the use of oxygen. The immune cells do this by shooting enzymes into bacteria to program the bacteria to self-destruct. Scientists have discovered this by observing immune killer cells as they destroy E. coli and the bacteria responsible for Listeria and tuberculosis. They measured the protein levels of each different bacteria before, during, and after the immune cells killed the bacteria. Each bacterial strain started with about 3000 proteins and ended up losing around 10% of their proteins due to the immune cells injected enzyme called granzyme B. Those 10% of proteins destroyed, however, were necessary to the survival of each bacteria. Granzyme B also shuts down ribosomes preventing the bacteria from making new proteins.

This discovery is significant at a time where antibiotics are becoming less efficient and superbugs are becoming prevalent.  Scientists hope to design a new drug that will treat bacterial infections in a similar way to our own immune killer cells.

Is Sleep Important?

Photoshop by Bryce Martin from google images.

The next time you decide to stay up at night to play video games or to watch Netflix, you might want to think twice!

Having enough sleep is essential to living a productive and healthy life. Without it, you will suffer in many ways. Sleep does not only make your body tired, but it also makes your brain cells tired. Sleep deprivation slows down brain function, which can result in mental lapses and loss of memory. Lack of sleep will cause the body’s neurons to slow down and not function as they should.

A study done by Dr. Itzhak Fried, professor of neurosurgery at UCLA, showed just how harmful sleep deprivation is.

To study the effects of deprivation, Fried recruited 12 patients with epilepsy, who already had electrodes implanted in their brains from a surgery unrelated to this study. These electrodes gave researchers access to their individual brain cells.

The people in the study stayed up for an entire night. During this time, the researchers measured the participants’ brain activity as they performed different tasks. For example, the patients were asked to categorize various images of faces, places and animals as fast as possible. Each image created a unique pattern of electrical activity in the brain.  Specifically, the researchers focused on cell activity in the temporal lobe, which regulates visual perception and memory.

The researchers found that as the patients stayed up longer, they became more tired, and it became more challenging for them to categorize the images. Their brain cells were clearly beginning to slow down.

The results also showed that the people staying up all night were going through mental lapses because sleep deprivation affected different parts of the brain. For all of these people, parts of their brains were turned off even though the other parts were fully functional.

Fried’s research, in addition to other studies, proves that sleep deprivation is similar to being drunk. Insufficient sleep exerts a similar influence on our brains as drinking too much. Lack of sleep can prohibit people from doing many things such as driving safely. People who are tired are not as alert and cannot react and adapt to their surrounding environment. Kids cannot focus in school and participate in extracurricular activities without enough sleep. Kids will be putting their education at risk if they do not sleep.

Is the extra hour of Netflix really worth it? Absolutely…NOT.

Sleep is one thing that should never be sacrificed.

Page 1 of 34

Powered by WordPress & Theme by Anders Norén

Skip to toolbar