BioQuakes

AP Biology class blog for discussing current research in Biology

Scientists developing ways to stop kidney failure?

In case you did not know, before week 34-36, the fetus develops 500,000-1,000,000 nephrons in the kidney. During these weeks, nephron progenitor (NP) cells are fully depleted and the body will no longer undergo nephrogenesis in its lifetime. Hence, if one were to lose a sufficient number of nephrons, the kidney would fail.

However, The Saban Research Institute of Children’s Hospital Los Angeles has found ways to isolate NP cells in order to investigate how they become renal cells. If scientists can develop an understanding of these cells, they might be able to figure out how to regenerate renal cells after a kidney failure.

This investigation can lead elsewhere, for example towards bioengineering and ways to regenerate other organs through these concepts. Overall, one can agree that this can lead to a breakthrough in future biology and medicinal studies.

 

 

Breakthrough in Type 1 Diabetes Treatments!

A new study demonstrates that a gene therapy approach can lead to long-term survival of functional beta cells as well as normal blood glucose levels for extended periods of time in mice with type 1 diabetes. Researchers used an adeno-associated viral (AAV) vector to deliver to the mouse pancreas two proteins, Pdx1 and MafA, which reprogrammed the alpha cells into functional, insulin-producing beta cells.

Beta-cell replacement therapy is likely to fail because adding new cells will fall victim to the same autoimmunity that destroyed the original cells. The solution is to reprogram other cell types to functional beta-like cells, which can produce insulin but are distinct from beta cells and therefore are not attacked by the immune system.

Researchers Gittes and first author Xiangwei Xiao of the University of Pittsburgh School of Medicine engineered an AAV vector to deliver proteins called Pdx1 and MafA, which support beta cell maturation, proliferation, and function, to the mouse pancreas. The reason why they picked alpha cells to reprogram is because they are plentiful, resemble beta cells, and are in the correct location, all of these factors facilitate reprogramming of cells.

Comparing the gene expression patterns of normal beta cells and insulin-producing cells derived from alpha cells, the researchers confirmed that it was nearly complete cellular reprogramming. The gene therapy produced normal blood glucose levels in diabetic mice, for typically four months. Also, the therapy was able to generate functional insulin-producing cells from human alpha cells.

Unfortunately, the mice did eventually return to the diabetic state, suggesting that it would not cure the disease. But viral vectors can be delivered directly to the human pancreas through a routinely performed non-surgical endoscopic procedure; however, this procedure can elicit pancreatic inflammation. Also, the longevity of the treatment is unknown considering that some studies suggest that processes in mice are highly accelerated. Therefore, four months could translate to several years for humans according to Gittes.

Currently, researchers are testing the therapy on non-human primates. If they are able to produce intended results, researchers will begin work with the FDA to get approval for use of this viral gene therapy for diabetic, type 1 and 2, patients. This could be the breakthrough that leads to the cure for diabetes!

Humans and Our Fellow Fishy Friends – More Alike than We Suppose?

The origin of teeth in vertebrates, therefore including in humans, has been long wondered and debated. Scientists have questioned whether teeth descended as part of the origin of the jaw, or if they had their own unique formation. More clarification has just been released to this mysterious question of our anatomy, with new recent data leading scientists to believe that teeth in the animal kingdom evolved from the scales of ancient fish, due to the shared characteristic of neural crest cells. The scales are still present today, covering the bodies of fish such as sharks, skate and rays.

The specific linage of sea life possessing skeletons fully made of cartilage consists of sharks, rays and skates. These fish still have primitive characteristics, such as “dermal denticles”, which are embedded into their skin. Dermal denticles share an extremely similar appearance of jagged teeth, as they are small sharp scales.

Recently, research scientists at the University of Cambridge tracked the cell development in the embryo of a the cartilaginous skate fish, using have used fluorescent markers. Through this method, they uncovered the new linking piece of information: the thorny scales are created from “neural crest cells”, the same type of cells that make up vertebrate teeth! This information provides further support to the theory that evolution of jawed teeth found currently in the mouths 99% of sea and mammal vertebrates, evolved from the scales of these fish.

Though the scales found on fish currently appear very different from teeth, the scales of ancient fish were much more similar to the tooth like structure of today. The reason for this, in the words of Dr. Andrew Gillis from Cambridge’s Department of Zoology and the Marine Biological Laboratory in Woods Hole, is that the scales of most fish that live today, like the cartilaginous fishes of skate and shark, have only retained some lineages to the primitive scales. Researchers at Cambridge hypothesize that amour plates consisted of many different layers of foundation of bone, an outer layer of dentine and cells in unborn embryos. They propose that this composition underwent many reductions and modifications. Shark’s scales do however further support this theory, as the dermal denticles they are covered in, give them a much rougher feel, than other fish. It is very possible that this also is because the denticles found on these fishes are remnants of superficial amour plating, of the early ancient skeletons of vertebrates.

This article and data finding was very thought provoking to me. I was not aware that of the uncertainty of the origin of teeth, in the world of science. Also because I am extremely interested in evolution and the origination of our species, this finding specifically intrigued me, as this data may be useful for new advances in evolutionary theories. It is fascinating to me consider the possibility of such a key part of vertebrates, specifically of humans, being so closely linked to fish, as that is a species of animal than I have ever considered having ties to human descent before. I think this data is a gateway to future discoveries that will be beneficial to the science world.

(Be sure to check out the second secondary source article linked below, as it discusses even more data on specially teeth enamel evolving from fish scales!)

Primary Source – Original Article: Ancient fish scales and vertebrate teeth share an embryonic origin

Secondary Source Article: Fish scales to fangs: Surprising tale of how teeth got their bite

Secondary Source Article: Your Tooth Enamel Might Have Started As Fish Scales

Photo Article Link (Photo taken by: Albert Kok)

Menstruation Does Not Affect Cognitive Performance…Period.

Mood swings, abdominal pain, nausea, acne, and bloating.  Do any of these sound familiar?  These are all some of the most common effects of menstruation and, until recently, a drop in cognitive function was widely accepted as another one.

Despite what old assumptions might have been, new scientific research is transforming the way that we look at the menstrual cycle.  According to a study led by Professor Brigitte Leeners, menstruation does not actually negatively affect your cognitive functions.  It is common for people to believe that hormones that are released during the cycle have a significant effect on cognition, but Leeners learned that estrogen, progesterone, and testosterone do not actually consistently inhibit cognitive performance.

Leeds measured cognitive ability at four different points during the menstrual cycles of 68 different women.  The participants were tested on their abilities through tests that specifically measured their cognitive bias, memory, and attention.  The test spanned the courses of two consecutive menstrual cycles.

As one can expect from an experiment, there were outliers, so some women experienced cognitive changes as a result of their periods.  According to Leeds, however, “Although there might be individual exceptions, women’s cognitive performance is in general not disturbed by hormonal changes occurring with the menstrual cycle.” So, even though certain women were affected by their cycle, the overwhelming trend showed that, typically, women are able to perform just as well whilst menstruating as they would if they were off of their cycle.

So, your period affects a lot of things.  It can cause discomfort, fatigue, gas, vomiting, and more.  But one thing it cannot do is prevent you from taking your next biology test or attending your 8 AM classes.  Oh well.

Gut Microbiome is Responsible for PTSD?

Recently, there have been many studies linking gut microbiome to PTSD. But how exactly are they connected?

Humans have an infinite number of organisms creating a unique composition of bacteria in the gut. It has been suspected before that any number of combinations of these gut microbiome can affect our health in different ways. One way is that they can cause neuropsychiatric disorders like PTSD or even just weaken mental toughness. Either way, the topic of gut microbiomes is definitely worth researching.

A recent study conducted by 22 scientists at Stellenbosch University in South Africa showed that compared to healthy, unaffected people, those with PTSD had noticeably lower levels of three gut bacteria: Actinobacteria, Lentisphaerae, and Verrucomicrobia. However, it was also noted from that study that the loss of these three gut bacteria may have occurred in earlier stages of life rather than the later stages when people generally develop PTSD.

According to a study conducted by researches of Oregon State University, when someone suffers from stress, their gut microbiomes become disordered and start to act oddly. Therefore, the lower levels of the three gut microbiomes could indicate that the levels of those microbiomes are throwing off the balance that is needed to maintain a stress and anxiety free mind which can prevent PTSD.

There is one catch about this result: that correlation does not confirm anything. Scientists conducting studies could only identify a correlation with gut microbiome and PTSD, but could not determine a cause.

Many are hopeful that these results will lead to discovery of future treatments because the microbiome can easily be changed with prebiotics, probiotics, synbiotics, or just dietary changes.

Although we do not know if these three gut microbiomes cause PTSD or come with PTSD, we do know that we are now one step closer to finding a cure or at least a better treatment for PTSD.

For more information click here or here!

Don’t be a victim of a pHatty diet!

 

Are you guilty of a pHatty diet?

What is the pH scale?

The human body can only function correctly with a pH level around 7.4. Foods such as fruits, vegetables, beans, and spices all can negatively contribute to poor health conditions because, due to their low pH levels, they are more acidic. If something is acidic, it is a substance that donates hydrogen ions; when an acid is dissolved in water, the balance between hydrogen ions and hydroxide ions is shifted and now there are more hydrogen ions than hydroxide ions in the solution. However if the substance is not acidic. it is considered a base. A base is is a substance that accepts hydrogen ions so when it is dissolved in water, the balance between hydrogen ions and hydroxide ions shifts the opposite way. Because the base “soaks up” hydrogen ions, there are more hydroxide ions than hydrogen ions. This kind of solution is alkaline.

pH Affects Health and Wellness

According to FoodandNutrition, because the kidneys and liver work to control the acidity levels but when big amounts of acidic food is consumed, it’s difficult for the body to accustom to the acidity which could be detrimental. It is important to understand that ” Lemon juice and tomatoes, for example, are acidic. But when ingested, they promote alkalinity. The pH of the actual food does not dictate the net effect on the body. Rather, it’s the “potential renal acid load” which measures acid in excretion/urine.

Even though there are parts of the body that can handle highly acidic materials, such as the stomach, it is important not to consume too much acid food because effects can be long term: : kidney stones, increased chance of cancer, liver problems and heart disease. A person is also at risk of acidosis which is a disease where your body fluids contain too much acid because the kidneys and liver are not functioning properly.  Symptoms of this are…

  • rapid and shallow breathing.
  • confusion.
  • fatigue.
  • headache.
  • sleepiness.
  • lack of appetite.
  • jaundice.
  • increased heart rate.

Here shows examples of liquids and where they fall on the pH scale. As you look down the scale, the liquids become more acidic but if you look up the scale, the liquids become less acidic.

What can you do?

To get away from a high acidic diet, you could try a plant-heavy diet with reduced refined sugar.  An example of a healthy meal with low levels of pH would be mushrooms, corn, beef and collard greens. It is really important to make sure you have a balanced diet, based on acidity, because the riscks are quite dangerous.

 

What do you think makes the human body not capable of consuming and maintaining large amounts of material with pH levels below 7.4?

Goodbye Leukemia– We Are Getting Closer!

A new finding suggests that the protein nup98 found in mouse cells may have another job. This is big in the biology world! Scientists already know this protein helps control the movement of molecules in and out of the nucleus, but they didn’t know it is directly involved in the development of blood cells. After further study, scientists from the Salk Institute found that nup98 enables immature blood stem cells to differentiate into mature cell types. However, this was not even the biggest finding– this differentiation process can contribute to the formation of leukemia!

The journey to make this discovery Salk’s Chief Science Office, Martin Hetzer calls, “combined genomics, proteomics, and cell biology.” It was a complex process at the least. It all started with the Hetzer’s lab focusing on a class of proteins called nucleoproteins (nups), part of the nuclear pore complex, which regulates the space between the nucleus of the cell. Why is this space so important? Because it is where the genetic material is located and the cytoplasm contains multiple important structures! There are about 30 of these proteins and some of them even have functions beyond forming the nuclear pore as transcription factors. Thus, the idea that a protein has more than one function (like nup98) was not a total surprise for the researchers (I still would have been surprised).

Although we know that nup98 has plays a role in hematopoietic (blood) cells, we do not know how yet. That is a question of the future. However, “The investigators found that it acts through a link with a protein complex called Wdr82-Set1/COMPASS, which is part of the cell’s epigenetic machinery.” Wait what do those numbers and epigenetic machinery mean? It is basically just a process that controls when genes are transcribed and when genes are blocked (hope that helped). The other big question is how this study will parallel in primates and humans, but the future is bright.

The continuation of this study in regard to Leukemia is now left in the hands of leukemia researchers, but cancers driven by a single genetic change like this have been proven easier to treat with drugs than cancer driven my multiple genetic changes. Although this discovery is only the first of many, there is hope for an even bigger finding in the future! I am excited to see what research is to follow. What about you?

How Ground Squirrels Are Bracing For The Cold

https://www.flickr.com/photos/mandj98/7647426240

As we enter the heart of winter, puffy coats, hats, and gloves make it out of our closets to protect us from the frigid air. While we trudge along shivering, the ground squirrel lives happily in the cold weather, resistant to the low temperatures.

The Phenomenon:

A new study shows that when the ground squirrel wakes from hibernation, it is less sensitive to the cold than its non-hibernating relatives. Why? A cold-sensing protein, TRPM8, in the sensory nerve cells is partly responsible for the amazing phenomenon.

The Evidence:

In an experiment conducted with mice (non-hibernating), ground squirrels, and Syrian hamsters (hibernating animals closely related to the ground squirrel), the animals were given the choice between a hotter plate and a colder plate. Whereas the mice gravitated toward the hot plate, the ground squirrel and Syrian hamster did not react to the cold temperature of the plate until it dropped below 10 degrees Celsius.

The Biology:

Part of the squirrel’s and hamster’s intolerance to cold has to do with the TRPM8 protein. TRPM8 is a cold-sensing protein that sends a signal to the brain when something is too cold. Researchers turned to the gene responsible for turning on the TRPM8 protein to find the differences between a ground squirrel and a rat. They found a chain of six amino acids in the squirrel gene that caused the adaptation to cold. When they switched that section with one from a rat, the squirrel was more sensitive to the cold.

It is quite amazing that scientists can extract and switch such small portions of DNA to find the exact cause of a trait. What else do you think this technology could be used for?

The Effect on Life:

Tolerance to cold may help the squirrel and hamster transition from an awake state to hibernation state. This is true because if an animal senses or feels cold, it will expend a lot of energy trying to warm itself up. This process counters they physiological changes needed to transition into hibernation, a state of low metabolic activity. Hence, since the hamster and squirrel don’t sense the cold, it will be easier to hibernate.

Further Research:

There is still a lot unknown about the TRPM8 protein and ground squirrel temperature sensitivities. It is believed that TRPM8 is only a part of their intolerance to cold. Furthermore, the structure and function of TRPM8 is still being studied and could lead to more breakthroughs. Want to learn more about ground squirrels, hibernation, or the TRPM8 protein? Click here to read the full article!

A Possible Way to Prevent Asthma in Infants

Did you know that asthma in infant boys may soon be able to be prevented? Infant boys whose mother’s have asthma are at a higher risk of developing asthma due to genetics. However, according to a study published by the University of Alberta in Canada, the structure of the gut microbiome may also play a role in the development of asthma in these boys. Microbiomes are the bacteria that live in human digestive tracts. The research team, led by epidemiologist Anita Kozyrskyj, studied the characteristics of the gut microbiome in 1000 infant boys born to mothers with asthma.

The team discovered that these boys were one-third as likely to have certain characteristics in their gut microbiome when they were 3-4 months old. The boys had a significantly less amount of Lactobacillus microbes. This evidence suggests that maternal asthma can be associated with the lack of Lactobacillus. The team believes that this discovery could lead to modifying the gut microbiome in these infants to reduce their risk of developing asthma.

The team started this research because they wanted to study the sex-based differences between boys and girls born to mothers with asthma. The gut bacteria on infant girls was affected differently. Girls have more bacteria than boys that maintain a mucus barrier and protect the gut cells. The team believes that this barrier protects the girls from developing asthma as babies, but are more prone to developing it during puberty.

Asthma is a breathing disease that affects many people. It is interesting to learn about how this sometimes deadly disease may be able to be prevented in infants. Although there it is not definite that this can be prevented, it is fascinating to read about this possibility. For more information on gut microbiomes, click here and here. Based on this research, do you think that scientists will be able to find a way to modify the gut bacteria?

 

Changing a baby’s DNA profile by physical contact?

Photograph by Vera Kratochvil, License: CC0 Public Domain

Recent research from the University of British Columbia and BC Children’s Hospital Research Institute proved that the amount of physical contact between infants and their caregivers can affect children at the molecular level. The study demonstrated that children who had been more distressed as infants and received less physical contact had an underdeveloped molecular profile for their age. This is the first study to show that the simple act of physical touching on human children can result in deeply-rooted changes in genetic expression.

The researchers measured a biochemical modification called DNA methylation in which parts of the chromosome are tagged with small molecules made of carbon and hydrogen. These molecules act as “dimmer switches” that help control how active each gene is and affect how cells function. The extent of methylation and where on the DNA it takes place can be impacted by external conditions, especially in childhood.

The team analyzed DNA methylation of 94 healthy children with records of received caregiving from the age of five weeks to four and a half years. The DNA methylation patterns the scientists gathered presented consistent differences between high-contact and low-contact children at five specific DNA sites. Two of the five sites are related to genes: one involves in the immune system, and the other in metabolism. The children who experienced higher distress and received little contact had a lower “epigenetic age” than what’s expected from their age. Such low epigenetic age is conceived as an underdevelopment of the child’s molecular profile. As medical genetics professor Michael Kobor said, “In children, we think slower epigenetic aging might indicate an inability to thrive.”

The researchers intend to further examine whether the “biological immaturity” – epigenetic changes resulted from low physical contact – carries broader implications for children’s health, especially their psychological development. According to the lead author Sarah Moore, “If further research confirms this initial finding, it will underscore the importance of providing physical contact, especially for distressed infants.”

You’re a Jerk!!!

Have you ever woken up in the middle of the night because you felt like you were falling?? What about waking up from sudden muscle spasms you’ve experienced in your sleep?? If you answered yes to either or both questions, that means you’ve experienced a hypnagogic jerk!

A term referencing to the period between wakefulness and sleep, called the hypnagogic state, hypnagogic jerks are involuntary muscle spasms that occur during light sleeping. These jerks are also known as ‘sleep starts’ and effect 70% of the population. Some factors scientists know to cause and increase the amount of twitches one can experience are high caffeine intake, stress, fatigue, anxiety, sleep deprivation, and intense activity and exercise right before sleep. Additionally, it is surmised that these spasms can also be induced by sound, light, and other external factors.

In a recent study, different people have reported that with these jerks comes hallucinations, vivid dreams, or even ringing noises inside of their heads! Though, with the acknowledgement of hypnagogic jerks and what comes with them, the actual main cause in the body is unknown. Here are two popular theories from the researches:

  1. The first idea is that the jerks are just natural when transitioning from alertness to sleep by nerves in the body ‘misfiring’.
  2. The second idea is that hypnagogic jerks result from evolution. It’s argued that the spasms are a primitive reflex where the brain at one time in history misinterpreted the transition from movement to relaxation and sleep as a sign of the primate falling, making the muscles quickly react.

Even with those two theories the actual cause is still a mystery and scientists continue to try and find it. Though don’t be scared if you experience a hypnagogic jerk once in a while that causes you to wake up, but if this starts to happen on a more frequent and repetitive basis seek a sleep specialist!

Feel free to comment your experiences with hypnagogic jerks!!

Original Source: https://www.livescience.com/39225-why-people-twitch-falling-asleep.html

Advanced new understanding of lung abnormality… thank you turtles!

A recent study of an unusual snapping turtle with one lung was found to share similar characteristics to humans born with one lung who survive infancy. “These shared traits include an enlarged single lung with a more homogenous distribution of respiratory parenchyma(the gas exchanging tissues), an opposing bronchus that ends where the opposite lung should be and malformations of the spine (such as scoliosis),” said Dr. Schnacher an Assistant Professor of cell biology at Louisiana State University. This study is important because there is very little known about lung morphogenesis.But we do knowthat mutations in genes cause severe, even lethal, lung malformations and lung formation. It is possible that similar genetic mutations are at play in both the turtle and in humans! What an interesting parallel!

 

 

 

 

 

The snapping turtle was found in Minnesota and brought to a wildlife rehabilitation center because of a deformity on its shell. However, it wasn’t long until the turtle’s second abnormality was discovered, its singular lung. The turtle was passed down to the hands of Dr. Schnacherand it went through computed tomography(CT) and microCT imaging. The images created 3D models of the area. For comparison, images of a normal turtle specimen were also taken. The comparison was conducted to observe the negative spaces within the lungs– the bronchial tree, lung skeleton, and lung surface. The architecture of the spaces and the patterns inside the lung were compared to the “normal” turtle. In addition, these models also facilitate a visual of specific structures that are very difficult to see in living animals, such as blood vessels and air spaces. What is so innovative about this technology is that qualitative and quantitative comparisons can be made between organisms with absolutely no harm to the specimens! For animal lovers like me this is a huge breakthrough.

So, what was the big reveal? The primary difference between the turtle with one lung and the normal turtle was that the normal turtle had an larger surface area and density value in regard to its gas exchanging tissue. The tissue originates from the secondary airways, thus the 14.3% increase is very signifigant. However, this abnormality had no effect on the turtles survival rate, it only effected aquatic locomotion and buoyancy control. How does this relate to humans now? The turtle represents an example of a non-fatal congenital defect and a clear pathway of how the turtle adapted to compensate for it. This increased understanding of soft tissue structures reveals key breakthroughs to one day understand and improve diagnoses in humans! I think the future holds big answers, what do you think?

 

Discovery in Worms Could Save Human Lives in the Future

A germline is the ancestry of one generation of cells to the next ones. But, scientists for a long time did not know how this has not been destroyed. Over time cell’s proteins become deformed and clump together, and this damage gets passed down to the next generation. So, in theory the germline should have already been destroyed, but it is still producing new and healthy life to this day. The question is: how?

Scientists have recently found the answer to this through studying a tiny worm called Caenorhabditis elegans. Similar to humans, these worms rely on certain genes to control their cellular division. In fact, they have a gene called daf-2 which has the ability to more than double their lifespan. After seeing this gene, scientists have realized that there are genes that are involved in repairing cells so that they do not become deformed or clumped.

Photo Source

Caenorhabditis elegans are hermaphrodites where once eggs are mature they travel to the sperm. But, the eggs have a lot of damaged proteins, only not the ones near the sperm. This led scientists to hypothesize that the sperm send out a signal to tell the egg to get rid of its damaged proteins. This signal triggers the lysosomes in the egg cells to become acidic and break down the clumps.

Even though this discovery was found on worms it could have seriously beneficial implications for humans. Stem cells also use lysosomes to get rid of damaged proteins. So this discovery could lead into learning how to treat diseases, such as Alzheimer’s Disease, to clean their aging tissue. A discovery found by studying tiny worms could lead to the answer to how to cure diseases that come with old age.

Bacteria may be more complex than we think

Photo by Wikimedia Commons

A common public misconception is that bacteria live alone and act as solitary organisms. This misconception, however, is far from reality.

Bacteria always live in very dense communities. Most bacteria prefer to live in a biofilm, a name for a group of organisms that stick together on a surface in an aqueous environment. The cells that stick together form an extracellular matrix which provides structural and biochemical support to the surrounding cells. In these biofilms, bacteria increase efficiency by dividing labor. The exterior cells in the biofilm defend the group from threats while the interior cells produce food for the rest.

While it has long been known that bacteria can communicate through the group with chemical signals, also known as quorum sensing, new studies show that bacteria can also communicate with one another electrically. Ned Wingreen, a biophysicist at Princeton describes the significance of the discovery; “I think these are arguably the most important developments in microbiology in the last couple years, We’re learning about an entirely new mode of communication.”

An entirely new mode of communication it is! Heres how it works:

Ion channels in a bacteria cell’s outer membrane allow electrically charged molecules to pass in and out, just like a neuron or nerve cell. Neurons pump out Sodium ions and let in Potassium ions until the threshold is reached and depolarization occurs. This is known as an action potential. Gurol Suel, a biophysicist at UCSD emphasizes that while the bacteria’s electrical impulse is similar to a neuron’s, it is much slower, a few millimeters per hour compared to a neuron’s 100 meters per second.

Photo by Chris 73 Wikimedia Commons

So what does this research mean?

Scientists agree that this revelation could open new doors to discovery. Suel says that electrical signaling has been shown to be stronger than traditional chemical signaling. In his research, Suel found that potassium signals could travel at constant strength for 1000 times the width of a bacteria cell, much longer and stronger than any chemical signal. Electrical signaling could also mean more communication between different bacteria. Traditional chemical signaling relies on receptors to receive messages, while bacteria, plant cells, and animal neurons all use potassium to send and receive signals. If these findings are correct, there’s potential in the future for the development of new antibiotics.

Learning about electrical signaling in bacteria has complicated our understanding of these previously thought to be simple organisms. El Naggar, another biophysicist at USC says, “Now we’re thinking of [bacteria] as masters of manipulating electrons and ions in their environment. It’s a very, very far cry from the way we thought of them as very simplistic organisms.”

 

 

New Developments in the Biology of Alzheimer’s Disease

Recent work by Boston University School of Medicine researchers shows developments in a new model for the biology of Alzheimer’s disease, which could lead to entirely new approaches in treating the disease. Alzheimer’s disease disrupts one’s cognitive abilities, including memory, thinking, and behavior. It accounts for 60-80% of all dementia cases. The neurodegenerative disease is caused by clumps and accumulations of 2 proteins –beta-amyloid and tau– which cause nerve cell injury and in turn, dementia.

Comparison of a normal brain (left) and the brain of a person diagnosed with Alzheimer’s (right).

Recent work by the BUSM researchers has shown that the clumping and accumulation of the tau protein are largely due to stress. The accumulation of tau produces “stress granules” (RNA/protein complexes). The brain responds to these stress granules by producing important protective proteins. However, with excessive stress, there is a greater accumulation of stress granules, which in turn leads to greater accumulation of clumped tau, which causes nerve cell injury. In this study, researchers are using this model to show that reducing the level of stress granules could lead to improved nerve cell health. It may be possible to reduce the level of stress granules by genetically decreasing TIA1, a protein required for stress granule formation.

In an experimental model of Alzheimer’s disease, the research team found that reducing the TIA1 protein led to striking improvements in memory and life expectancy. However, although stress granule levels decreased (leading to better protection), the team observed that the clumps of tau became larger. The researchers further looked at the tau pathology and found that the while small clumps of tau (known as tau oligomers) are toxic, larger tau clumps are generally less toxic. According to pharmacology and experimental therapeutics professor Benjamin Wolozin, this discovery would explain why the experimental models experienced better memory and longer life expectancy. The implications and ability of TIA1 protein reduction in order to provide protection may lead to further novel developments in the biology and treatment of Alzheimer’s disease.

Source: https://www.sciencedaily.com/releases/2017/11/171120111319.htm

Engineering Cancer Killers!

https://commons.wikimedia.org/wiki/User:ArturoJuárezFlores

Engineering Cancer Killers!                                                                                               

Today, millions of people are dying from the complex disease, cancer. Although treatments such as chemotherapy and radiation are used to cure the disease, immunotherapy has emerged as a potential cure for cancer. Professor Oliver Ottmann, Head of Haematology at Cardiff University and co-lead of the Cardiff Experimental Cancer Medicine Centre (ECMC), acknowledged the importance of immunotherapy and considers it a huge breakthrough in cancer research and treatment. This lead his team to further discover the key to genetically engineering T-cells to recognize and kill cancer cells. 

How Does It Work?

T-cells are an important part of our immune systems. They contain receptors that can recognize bacterial infections or viruses and help fight them off, and potentially kill cancer cells. Scientists have developed a way to genetically engineer T-cells using CRISPR genome editing. Normally, the genetically engineered T-cells, that are created to fight cancer, contain two types of receptors. One type is called therapeutic, and is created and added on to the cell in a lab, and the other types of receptors are natural and originated from the T-cell.

The Problem 

The team acknowledged that since both kinds of receptors occupy the cell, there is minimal space for all receptors to fit on the cell; therefore certain receptors must challenge other receptors in order to perform their own function. Since there are more natural receptors on a T-cell than the therapeutic receptors,the natural receptors perform superior than the therapeutic receptors. This means the genetically engineered T-cells are not able to work at their full potential; they are unable to kill cancer cells efficiently.

The Solution

After recognizing the problem, Professor Oliver Ottmann and his team genetically engineered T-cells, by genome editing, that only contain the therapeutic receptors they intended on adding. By eliminating all of the natural receptors that T-cells normally have, the therapeutic receptors will increase in efficiency.

The Future

Since scientists have figured out a way to maximize the efficiency of genetically engineered cancer fighting T-cells, finding a cure to cancer could be closer than we thought. Could this cutting edge research be the start of a solution for cancer treatment?  Do you think scientists and society will pursue this theory? This article sparked my interest because finding a reliable cure for cancer has been a problem for many years, every discovery we make brings us closer to finding the best cure.

Build A Baby?!

Have you ever wanted a baby to be a super fast swimmer like Michael Phelps? How about a child who has more talent than Mozart? Well, that can’t happen.

According to the  New York Times Article, Scientists in Oregon have successfully modified the DNA of human embryos. This led to the new hope that designer babies are in our near future. But, designer babies are more likely to be seen in movies than in reality.

The main reason why designer babies are unlikely is because great vocals and amazing coordination does not come from a single gene mutation, or even from an easily identifiable number of genes.

Hank Greely, director of the Center for Law and the Biosciences at Stanford, said,“Right now, we know nothing about genetic enhancement,”. “We’re never going to be able to say, honestly, ‘This embryo looks like a 1550 on the two-part SAT.’”File:Baby Face.JPG

Physical traits, like height or arm length, will also be difficult to genetically manipulate. Some scientists estimate height is influenced by as many as 93,000 genetic variations. A recent study identified 697 of them.

Talents and traits aren’t the only thing that are genetically complex. So are most physical diseases and psychiatric disorders. The genetic message is not a picture book ,but it actually resembles a shelf full of books with chapters, subsections and footnotes.So talents, traits and most medical conditions are out of the equation.

But about 10,000 medical conditions are linked to specific mutations, including Huntington’s disease, cancers caused by BRCA genes, Tay-Sachs disease, cystic fibrosis, sickle cell anemia, and some cases of early-onset Alzheimer’s. Repairing the responsible mutations in theory could eradicate these diseases from the so-called germline, the genetic material passed from one generation to the next. No future family members would inherit them.

Although this is challenging, it is proven to be more possible for scientists to alter the genes that lead to genetic diseases.

Last but not least, it is illegal.
There are debates regarding ethics and “playing God”. “I’m totally against,” said Dr. Belmonte. “The possibility of moving forward not to create or prevent disease but rather to perform gene enhancement in humans.”

Other people are scared of a super children takeover.

“Allowing any form of human germline modification leaves the way open for all kinds — especially when fertility clinics start offering ‘genetic upgrades’ to those able to afford them,” Marcy Darnovsky, executive director of the Center for Genetics and Society, said in a statement. “ We could all too easily find ourselves in a world where some people’s children are considered biologically superior to the rest of us.”

In summary, genetic modification for babies will only be used in dire cases. Therefore, the only way I can have a red head child who can play the piano and the flute simultaneously with their feet is through Sims 4.

Sleep In for Heart Surgery!

Now if you’re on the operating table, likely passed out and opened up, its a fair bet that what time of day it is will have absolutely no importance to you. But maybe it should.

Recently, a study spanning over 6 years and conducted on over 600 patients, was based on recovering from heart surgery had noticed a strong correlation with time of day and rate/outcome of recovery.

These patients who underwent a heart valve replacement had shown an interesting relationship with a humans circadian rhythm. Those who underwent surgery in the afternoon had much better results and recovery than those in the morning. Additionally, in the following 500 days after the surgery, patients who were operated on during the afternoon were half as likely to have a major cardiac event such as myocardial infarction (commonly known as a heart attack) or acute heart failure.

The team conducted a second study in which a total of 88 random patients were put into two groups, morning and afternoon. The results showed that those in the afternoon had lower levels of myocardial ischemia.

In a further examination of these findings in an attempt to find a cause, an article from Scientific American states, “The researchers isolated heart tissue samples from a subgroup of 30 patients from the randomized controlled trial. In laboratory tests, tissue from afternoon surgeries more quickly regained its ability to contract when researchers imitated the process of the heart refilling with blood as surgery concludes.”

While operating in the afternoon may have its benefits, doctors say that altogether abandoning surgery in the morning is simply out of the question. However, other practical applications of this are being studied, such as how it may affect cancer treatment in patients and whether or not circadian rhythm affects a variety of medical procedures. But until then, let the anesthesia kick in and enjoy the operation.

What do you think will be the next application of circadian rhythm or other anatomical and biological features?

Want to find out more? Sources below.

http://www.telegraph.co.uk/science/2017/10/26/surgery-safer-afternoon-bodys-circadian-rhythm-study-suggests/

https://www.scientificamerican.com/article/why-heart-surgery-may-be-better-in-the-afternoon/

http://www.independent.co.uk/news/science/heart-surgery-afternoon-morning-safety-post-illness-recovery-circadian-rhythm-body-clock-a8023736.html

Australian and PNG doctors and nurses performing surgery in Operation Open Heart. Port Moresby General Hospital, Papua New Guinea. Picture by Rocky Roe/AusAID

Beetle and Bacteria are Best of Friends

The thistle tortoise beetle, a type of insect native to Eurasia, has, astonishingly, the ability to break down pectin.  Pectin is a polysaccharide that makes up plant cell walls that is undigestable to most animals due to its structure.  The tortoise beetle, a leaf-eater, has developed a symbiotic relationship with a certain bacteria that can break down pectin, allowing the leaf-munching insects to chow away.

Thistle Tortoise Beetle

Hassan Salem, the lead author of the study, became interested in how the small insects had the ability to gain nutrients from plant cell walls.  Salem looked in the gut of the beetle and noticed a certain bacteria with the genes to create enzymes that allow pectin and other tough molecules to be broken down in the beetle, where the beetle’s digestive tract can then absorb the nutrients.  What makes the bacteria interesting is that it contains significantly fewer DNA base pairs in its genome.  A typical bacteria has millions of DNA base pairs while this bacteria only has around 270,000 DNA base pairs.

Thistle Tortoise Beetle on a leaf

The bacteria has developed such an advantageous symbiotic relationship with the thistle tortoise beetle that it doesn’t require an abundance of DNA base pairs.  The strain of bacterium is more similar to that of “intracellular bacteria and organelles than to free-living bacteria” (Clark).  The bacteria is so important to the survival of the beetle that female beetles insert a portion of their own bacteria into each egg so that the unhatched insects can create their own colonies.  Salem named the bacteria Candidatus Stammera capleta.

Forever Young?

Humans have been trying to solve the question of immortality for hundreds of years. What if the answer to this age old question was right in front of our eyes.

As cells age their proteins become deformed and clump together. They then pass those deformities down to their offspring. Wouldn’t it make sense that this linage, the germline, would eventually become too damaged to produce healthy new life. The resilience of the germline is a phenomena that has puzzled scientists for over 130 years. Humans spend decades aging only to produce offspring that are essentially “brand new”.

Scientists Dr. Bohnert and Cynthia Kenyon turned to studying a tiny worm called Caenorhabditis elegans to determine one way the germline stays young. Right before an egg is fertilized it is swept clean of its deformed proteins. They used Caenorhabditis elegans because they use many of the same genes that humans do for cell division and destruction of faulty cells. Most C. elegans are hermaphrodites, producing both eggs and sperm. They eggs travel down a tube, at the end of which they encounter the sperm.

The researchers found that normally the worm’s egg cells carried a surprisingly high number of damaged proteins, but in the eggs near the sperm there was far less damage. They then ran the same experiment with one difference; the women could not produce sperm. The results were that the egg cells throughout the tube were filled with damaged proteins. More experiments were done using a special strain of worms in which clumping proteins glowed. In every experiment the protein clumps disappeared within the eggs once they were near sperm.

Dr. Kenyon and Dr. Bohnert put together a chain of events of how these eggs rejuvenated themselves. It begins with a chemical signal released by the sperm that begins drastic change in the egg. The protein clumps come in contact with lysosomes which have become acidic due to the sperm’s chemical signals. The acidic environment is the perfect pH for enzymes within the lysosome to break down the clumped proteins. This process is done right before fertilization so that their offspring will not inherit the burden of damaged proteins.

It is very likely that the same strategy is used in humans as well as worms. Dr. Kenyon and Dr. Bohnert reported this model has recently been proven on frogs; a much closer relative to humans. This is the way that cells can guarantee a clean slate for their next generation.

What if fertilization wasn’t the only place this happened. What if stem cells use this process to eradicate damaged proteins. This research could have huge implications in treating diseases such as cancer by giving cells a signal to remove all the damage within then. Maybe this could be humanities key to unlock the secret of immortality by signaling cells to repair themselves.

Page 1 of 35

Powered by WordPress & Theme by Anders Norén

Skip to toolbar